Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
51c28c20
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
51c28c20
编写于
5月 08, 2020
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update dygraph code
上级
8793a586
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
178 addition
and
31 deletion
+178
-31
demo/sequence_labeling/sequence_label_dygraph.py
demo/sequence_labeling/sequence_label_dygraph.py
+107
-0
demo/text_classification/text_classifier_dygraph.py
demo/text_classification/text_classifier_dygraph.py
+5
-7
paddlehub/common/paddle_helper.py
paddlehub/common/paddle_helper.py
+4
-2
paddlehub/module/module.py
paddlehub/module/module.py
+2
-7
paddlehub/module/nlp_module.py
paddlehub/module/nlp_module.py
+60
-15
未找到文件。
demo/sequence_labeling/sequence_label_dygraph.py
0 → 100644
浏览文件 @
51c28c20
#coding:utf-8
import
argparse
import
os
import
numpy
as
np
import
paddlehub
as
hub
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.optimizer
import
AdamOptimizer
from
paddlehub.finetune.evaluate
import
chunk_eval
,
calculate_f1
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
1
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
16
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--log_interval"
,
type
=
int
,
default
=
10
,
help
=
"log interval."
)
parser
.
add_argument
(
"--save_interval"
,
type
=
int
,
default
=
10
,
help
=
"save interval."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
"paddlehub_finetune_ckpt_dygraph"
,
help
=
"Path to save log data."
)
parser
.
add_argument
(
"--max_seq_len"
,
type
=
int
,
default
=
512
,
help
=
"Number of words of the longest seqence."
)
# yapf: enable.
class
TransformerSequenceLabelLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
,
transformer
):
super
(
TransformerSequenceLabelLayer
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
transformer
=
transformer
self
.
fc
=
Linear
(
input_dim
=
768
,
output_dim
=
num_classes
)
def
forward
(
self
,
input_ids
,
position_ids
,
segment_ids
,
input_mask
):
result
=
self
.
transformer
(
input_ids
,
position_ids
,
segment_ids
,
input_mask
)
pred
=
self
.
fc
(
result
[
'sequence_output'
])
ret_infers
=
fluid
.
layers
.
reshape
(
x
=
fluid
.
layers
.
argmax
(
pred
,
axis
=
2
),
shape
=
[
-
1
,
1
])
pred
=
fluid
.
layers
.
reshape
(
pred
,
shape
=
[
-
1
,
self
.
num_classes
])
return
fluid
.
layers
.
softmax
(
pred
),
ret_infers
def
finetune
(
args
):
ernie
=
hub
.
Module
(
name
=
"ernie"
,
max_seq_len
=
args
.
max_seq_len
)
with
fluid
.
dygraph
.
guard
():
dataset
=
hub
.
dataset
.
MSRA_NER
()
ts
=
TransformerSequenceLabelLayer
(
num_classes
=
dataset
.
num_labels
,
transformer
=
ernie
)
adam
=
AdamOptimizer
(
learning_rate
=
1e-5
,
parameter_list
=
ts
.
parameters
())
state_dict_path
=
os
.
path
.
join
(
args
.
checkpoint_dir
,
'dygraph_state_dict'
)
if
os
.
path
.
exists
(
state_dict_path
+
'.pdparams'
):
state_dict
,
_
=
fluid
.
load_dygraph
(
state_dict_path
)
ts
.
load_dict
(
state_dict
)
reader
=
hub
.
reader
.
SequenceLabelReader
(
dataset
=
dataset
,
vocab_path
=
ernie
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
,
sp_model_path
=
ernie
.
get_spm_path
(),
word_dict_path
=
ernie
.
get_word_dict_path
())
train_reader
=
reader
.
data_generator
(
batch_size
=
args
.
batch_size
,
phase
=
'train'
)
loss_sum
=
total_infer
=
total_label
=
total_correct
=
cnt
=
0
# 执行epoch_num次训练
for
epoch
in
range
(
args
.
num_epoch
):
# 读取训练数据进行训练
for
batch_id
,
data
in
enumerate
(
train_reader
()):
input_ids
=
np
.
array
(
data
[
0
][
0
]).
astype
(
np
.
int64
)
position_ids
=
np
.
array
(
data
[
0
][
1
]).
astype
(
np
.
int64
)
segment_ids
=
np
.
array
(
data
[
0
][
2
]).
astype
(
np
.
int64
)
input_mask
=
np
.
array
(
data
[
0
][
3
]).
astype
(
np
.
float32
)
labels
=
np
.
array
(
data
[
0
][
4
]).
astype
(
np
.
int64
).
reshape
(
-
1
,
1
)
seq_len
=
np
.
squeeze
(
np
.
array
(
data
[
0
][
5
]).
astype
(
np
.
int64
),
axis
=
1
)
pred
,
ret_infers
=
ts
(
input_ids
,
position_ids
,
segment_ids
,
input_mask
)
loss
=
fluid
.
layers
.
cross_entropy
(
pred
,
to_variable
(
labels
))
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
# 参数更新
adam
.
minimize
(
avg_loss
)
loss_sum
+=
avg_loss
.
numpy
()
*
labels
.
shape
[
0
]
label_num
,
infer_num
,
correct_num
=
chunk_eval
(
labels
,
ret_infers
.
numpy
(),
seq_len
,
dataset
.
num_labels
,
1
)
cnt
+=
labels
.
shape
[
0
]
total_infer
+=
infer_num
total_label
+=
label_num
total_correct
+=
correct_num
if
batch_id
%
args
.
log_interval
==
0
:
precision
,
recall
,
f1
=
calculate_f1
(
total_label
,
total_infer
,
total_correct
)
print
(
'epoch {}: loss {}, f1 {} recall {} precision {}'
.
format
(
epoch
,
loss_sum
/
cnt
,
f1
,
recall
,
precision
))
loss_sum
=
total_infer
=
total_label
=
total_correct
=
cnt
=
0
if
batch_id
%
args
.
save_interval
==
0
:
state_dict
=
ts
.
state_dict
()
fluid
.
save_dygraph
(
state_dict
,
state_dict_path
)
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
finetune
(
args
)
demo/text_classification/text_classifier_dygraph.py
浏览文件 @
51c28c20
...
@@ -28,10 +28,10 @@ class TransformerClassifier(fluid.dygraph.Layer):
...
@@ -28,10 +28,10 @@ class TransformerClassifier(fluid.dygraph.Layer):
self
.
fc
=
Linear
(
input_dim
=
768
,
output_dim
=
num_classes
)
self
.
fc
=
Linear
(
input_dim
=
768
,
output_dim
=
num_classes
)
def
forward
(
self
,
input_ids
,
position_ids
,
segment_ids
,
input_mask
):
def
forward
(
self
,
input_ids
,
position_ids
,
segment_ids
,
input_mask
):
pooled_output
,
sequence_output
=
self
.
transformer
(
result
=
self
.
transformer
(
input_ids
,
position_ids
,
segment_ids
,
input_ids
,
position_ids
,
segment_ids
,
input_mask
)
input_mask
)
cls_feats
=
fluid
.
layers
.
dropout
(
cls_feats
=
fluid
.
layers
.
dropout
(
pooled_output
,
result
[
'pooled_output'
]
,
dropout_prob
=
0.1
,
dropout_prob
=
0.1
,
dropout_implementation
=
"upscale_in_train"
)
dropout_implementation
=
"upscale_in_train"
)
cls_feats
=
fluid
.
layers
.
reshape
(
cls_feats
,
shape
=
[
-
1
,
768
])
cls_feats
=
fluid
.
layers
.
reshape
(
cls_feats
,
shape
=
[
-
1
,
768
])
...
@@ -40,14 +40,12 @@ class TransformerClassifier(fluid.dygraph.Layer):
...
@@ -40,14 +40,12 @@ class TransformerClassifier(fluid.dygraph.Layer):
def
finetune
(
args
):
def
finetune
(
args
):
ernie
=
hub
.
Module
(
name
=
"ernie"
,
max_seq_len
=
args
.
max_seq_len
)
with
fluid
.
dygraph
.
guard
():
with
fluid
.
dygraph
.
guard
():
ernie
=
hub
.
Module
(
name
=
"ernie"
)
dataset
=
hub
.
dataset
.
ChnSentiCorp
()
dataset
=
hub
.
dataset
.
ChnSentiCorp
()
tc
=
TransformerClassifier
(
tc
=
TransformerClassifier
(
num_classes
=
dataset
.
num_labels
,
transformer
=
ernie
)
num_classes
=
dataset
.
num_labels
,
transformer
=
ernie
)
adam
=
AdamOptimizer
(
adam
=
AdamOptimizer
(
learning_rate
=
1e-5
,
parameter_list
=
tc
.
parameters
())
learning_rate
=
0.001
,
parameter_list
=
tc
.
parameters
())
print
(
len
(
tc
.
parameters
()))
state_dict_path
=
os
.
path
.
join
(
args
.
checkpoint_dir
,
state_dict_path
=
os
.
path
.
join
(
args
.
checkpoint_dir
,
'dygraph_state_dict'
)
'dygraph_state_dict'
)
if
os
.
path
.
exists
(
state_dict_path
+
'.pdparams'
):
if
os
.
path
.
exists
(
state_dict_path
+
'.pdparams'
):
...
...
paddlehub/common/paddle_helper.py
浏览文件 @
51c28c20
...
@@ -19,10 +19,11 @@ from __future__ import print_function
...
@@ -19,10 +19,11 @@ from __future__ import print_function
import
copy
import
copy
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddlehub.module
import
module_desc_pb2
from
paddlehub.module
import
module_desc_pb2
from
paddlehub.common.utils
import
from_pyobj_to_module_attr
,
from_module_attr_to_pyobj
from
paddlehub.common.utils
import
from_pyobj_to_module_attr
,
from_module_attr_to_pyobj
,
version_compare
from
paddlehub.common.logger
import
logger
from
paddlehub.common.logger
import
logger
dtype_map
=
{
dtype_map
=
{
...
@@ -62,6 +63,7 @@ def get_variable_info(var):
...
@@ -62,6 +63,7 @@ def get_variable_info(var):
var_info
[
'trainable'
]
=
var
.
trainable
var_info
[
'trainable'
]
=
var
.
trainable
var_info
[
'optimize_attr'
]
=
var
.
optimize_attr
var_info
[
'optimize_attr'
]
=
var
.
optimize_attr
var_info
[
'regularizer'
]
=
var
.
regularizer
var_info
[
'regularizer'
]
=
var
.
regularizer
if
not
version_compare
(
paddle
.
__version__
,
'1.8'
):
var_info
[
'gradient_clip_attr'
]
=
var
.
gradient_clip_attr
var_info
[
'gradient_clip_attr'
]
=
var
.
gradient_clip_attr
var_info
[
'do_model_average'
]
=
var
.
do_model_average
var_info
[
'do_model_average'
]
=
var
.
do_model_average
else
:
else
:
...
...
paddlehub/module/module.py
浏览文件 @
51c28c20
...
@@ -146,12 +146,6 @@ class Module(fluid.dygraph.Layer):
...
@@ -146,12 +146,6 @@ class Module(fluid.dygraph.Layer):
self
.
_initialize
(
**
kwargs
)
self
.
_initialize
(
**
kwargs
)
self
.
_is_initialize
=
True
self
.
_is_initialize
=
True
self
.
_code_version
=
"v2"
self
.
_code_version
=
"v2"
self
.
model_runner
=
fluid
.
dygraph
.
StaticModelRunner
(
self
.
pretrained_model_path
)
@
property
def
pretrained_model_path
(
self
):
return
self
.
default_pretrained_model_path
def
_get_func_name
(
self
,
current_cls
,
module_func_dict
):
def
_get_func_name
(
self
,
current_cls
,
module_func_dict
):
mod
=
current_cls
.
__module__
+
"."
+
current_cls
.
__name__
mod
=
current_cls
.
__module__
+
"."
+
current_cls
.
__name__
...
@@ -256,7 +250,8 @@ class Module(fluid.dygraph.Layer):
...
@@ -256,7 +250,8 @@ class Module(fluid.dygraph.Layer):
pass
pass
def
forward
(
self
,
*
args
,
**
kwargs
):
def
forward
(
self
,
*
args
,
**
kwargs
):
return
self
.
model_runner
(
*
args
,
**
kwargs
)
raise
RuntimeError
(
'{} does not support dynamic graph mode yet.'
.
format
(
self
.
name
))
class
ModuleHelper
(
object
):
class
ModuleHelper
(
object
):
...
...
paddlehub/module/nlp_module.py
浏览文件 @
51c28c20
...
@@ -24,13 +24,15 @@ import os
...
@@ -24,13 +24,15 @@ import os
import
re
import
re
import
six
import
six
import
paddle
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddlehub.common
import
paddle_helper
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
import
paddlehub
as
hub
import
paddlehub
as
hub
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
from
paddlehub.common
import
paddle_helper
,
tmp_dir
from
paddlehub.common.logger
import
logger
from
paddlehub.common.logger
import
logger
from
paddlehub.common.utils
import
sys_stdin_encoding
from
paddlehub.common.utils
import
sys_stdin_encoding
,
version_compare
from
paddlehub.io.parser
import
txt_parser
from
paddlehub.io.parser
import
txt_parser
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
runnable
...
@@ -246,9 +248,44 @@ class TransformerModule(NLPBaseModule):
...
@@ -246,9 +248,44 @@ class TransformerModule(NLPBaseModule):
Tranformer Module base class can be used by BERT, ERNIE, RoBERTa and so on.
Tranformer Module base class can be used by BERT, ERNIE, RoBERTa and so on.
"""
"""
@
property
def
__init__
(
self
,
def
pretrained_model_path
(
self
):
name
=
None
,
return
self
.
params_path
directory
=
None
,
module_dir
=
None
,
version
=
None
,
max_seq_len
=
128
,
**
kwargs
):
if
not
directory
:
return
super
(
TransformerModule
,
self
).
__init__
(
name
=
name
,
directory
=
directory
,
module_dir
=
module_dir
,
version
=
version
,
**
kwargs
)
self
.
max_seq_len
=
max_seq_len
if
version_compare
(
paddle
.
__version__
,
'1.8.0'
):
with
tmp_dir
()
as
_dir
:
input_dict
,
output_dict
,
program
=
self
.
context
(
max_seq_len
=
max_seq_len
)
fluid
.
io
.
save_inference_model
(
dirname
=
_dir
,
main_program
=
program
,
feeded_var_names
=
[
input_dict
[
'input_ids'
].
name
,
input_dict
[
'position_ids'
].
name
,
input_dict
[
'segment_ids'
].
name
,
input_dict
[
'input_mask'
].
name
],
target_vars
=
[
output_dict
[
"pooled_output"
],
output_dict
[
"sequence_output"
]
],
executor
=
fluid
.
Executor
(
fluid
.
CPUPlace
()))
with
fluid
.
dygraph
.
guard
():
self
.
model_runner
=
fluid
.
dygraph
.
StaticModelRunner
(
_dir
)
def
init_pretraining_params
(
self
,
exe
,
pretraining_params_path
,
def
init_pretraining_params
(
self
,
exe
,
pretraining_params_path
,
main_program
):
main_program
):
...
@@ -275,7 +312,7 @@ class TransformerModule(NLPBaseModule):
...
@@ -275,7 +312,7 @@ class TransformerModule(NLPBaseModule):
def
context
(
def
context
(
self
,
self
,
max_seq_len
=
128
,
max_seq_len
=
None
,
trainable
=
True
,
trainable
=
True
,
):
):
"""
"""
...
@@ -291,6 +328,9 @@ class TransformerModule(NLPBaseModule):
...
@@ -291,6 +328,9 @@ class TransformerModule(NLPBaseModule):
"""
"""
if
not
max_seq_len
:
max_seq_len
=
self
.
max_seq_len
assert
max_seq_len
<=
self
.
MAX_SEQ_LEN
and
max_seq_len
>=
1
,
"max_seq_len({}) should be in the range of [1, {}]"
.
format
(
assert
max_seq_len
<=
self
.
MAX_SEQ_LEN
and
max_seq_len
>=
1
,
"max_seq_len({}) should be in the range of [1, {}]"
.
format
(
max_seq_len
,
self
.
MAX_SEQ_LEN
)
max_seq_len
,
self
.
MAX_SEQ_LEN
)
...
@@ -357,14 +397,6 @@ class TransformerModule(NLPBaseModule):
...
@@ -357,14 +397,6 @@ class TransformerModule(NLPBaseModule):
return
inputs
,
outputs
,
module_program
return
inputs
,
outputs
,
module_program
# @property
# def model_runner(self):
# if not self._model_runner:
# self._model_runner = fluid.dygraph.StaticModelRunner(
# self.params_path)
# return self._model_runner
def
get_embedding
(
self
,
texts
,
use_gpu
=
False
,
batch_size
=
1
):
def
get_embedding
(
self
,
texts
,
use_gpu
=
False
,
batch_size
=
1
):
"""
"""
get pooled_output and sequence_output for input texts.
get pooled_output and sequence_output for input texts.
...
@@ -443,3 +475,16 @@ class TransformerModule(NLPBaseModule):
...
@@ -443,3 +475,16 @@ class TransformerModule(NLPBaseModule):
"The module context has not been initialized. "
"The module context has not been initialized. "
"Please call context() before using get_params_layer"
)
"Please call context() before using get_params_layer"
)
return
self
.
params_layer
return
self
.
params_layer
def
forward
(
self
,
input_ids
,
position_ids
,
segment_ids
,
input_mask
):
if
version_compare
(
paddle
.
__version__
,
'1.8.0'
):
pooled_output
,
sequence_output
=
self
.
model_runner
(
input_ids
,
position_ids
,
segment_ids
,
input_mask
)
return
{
'pooled_output'
:
pooled_output
,
'sequence_output'
:
sequence_output
}
else
:
raise
RuntimeError
(
'{} only support dynamic graph mode in paddle >= 1.8.0'
.
format
(
self
.
name
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录