Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
489f4e23
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
489f4e23
编写于
11月 08, 2019
作者:
S
shenyuhan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Unified nlp interface.
上级
8a44068e
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
112 addition
and
148 deletion
+112
-148
demo/serving/Classification_vgg11_imagenet/vgg11_imagenet_serving_demo.py
...ssification_vgg11_imagenet/vgg11_imagenet_serving_demo.py
+1
-1
demo/serving/Lexical_Analysis_lac/lac_with_dict_serving_demo.py
...erving/Lexical_Analysis_lac/lac_with_dict_serving_demo.py
+1
-2
paddlehub/serving/app_single.py
paddlehub/serving/app_single.py
+110
-145
未找到文件。
demo/serving/Classification_vgg11_imagenet/vgg11_imagenet_serving_demo.py
浏览文件 @
489f4e23
...
...
@@ -3,7 +3,7 @@ import requests
import
json
if
__name__
==
"__main__"
:
file_list
=
[
"
cat.jpg"
,
"
flower.jpg"
]
file_list
=
[
"
../img/cat.jpg"
,
"../img/
flower.jpg"
]
files
=
[(
"image"
,
(
open
(
item
,
"rb"
)))
for
item
in
file_list
]
url
=
"http://127.0.0.1:8866/predict/image/vgg11_imagenet"
r
=
requests
.
post
(
url
=
url
,
files
=
files
)
...
...
demo/serving/Lexical_Analysis_lac/lac_with_dict_serving_demo.py
浏览文件 @
489f4e23
...
...
@@ -6,8 +6,7 @@ if __name__ == "__main__":
text_list
=
[
"今天是个好日子"
,
"天气预报说今天要下雨"
]
text
=
{
"text"
:
text_list
}
# 将用户自定义词典文件发送到预测接口即可
with
open
(
"dict.txt"
,
"rb"
)
as
fp
:
file
=
{
"user_dict"
:
fp
.
read
()}
file
=
{
"user_dict"
:
open
(
"dict.txt"
,
"rb"
)}
url
=
"http://127.0.0.1:8866/predict/text/lac"
r
=
requests
.
post
(
url
=
url
,
files
=
file
,
data
=
text
)
...
...
paddlehub/serving/app_single.py
浏览文件 @
489f4e23
...
...
@@ -22,17 +22,6 @@ import os
import
base64
import
logging
nlp_module_method
=
{
"lac"
:
"predict_lexical_analysis"
,
"simnet_bow"
:
"predict_sentiment_analysis"
,
"lm_lstm"
:
"predict_pretrained_model"
,
"senta_lstm"
:
"predict_pretrained_model"
,
"senta_gru"
:
"predict_pretrained_model"
,
"senta_cnn"
:
"predict_pretrained_model"
,
"senta_bow"
:
"predict_pretrained_model"
,
"senta_bilstm"
:
"predict_pretrained_model"
,
"emotion_detection_textcnn"
:
"predict_pretrained_model"
}
cv_module_method
=
{
"vgg19_imagenet"
:
"predict_classification"
,
"vgg16_imagenet"
:
"predict_classification"
,
...
...
@@ -65,63 +54,33 @@ cv_module_method = {
}
def
predict_sentiment_analysis
(
module
,
input_text
,
batch_size
,
extra
=
None
):
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
data
=
input_text
[
0
]
data
.
update
(
input_text
[
1
])
results
=
predict_method
(
data
=
data
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
return
results
def
predict_pretrained_model
(
module
,
input_text
,
batch_size
,
extra
=
None
):
global
use_gpu
def
predict_nlp
(
module
,
input_text
,
req_id
,
batch_size
,
extra
=
None
):
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
data
=
{
"text"
:
input_text
}
results
=
predict_method
(
data
=
data
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
return
results
def
predict_lexical_analysis
(
module
,
input_text
,
batch_size
,
extra
=
[]):
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
data
=
{
"text"
:
input_text
}
try
:
if
extra
==
[]:
results
=
predict_method
(
data
=
data
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
else
:
user_dict
=
extra
[
0
]
results
=
predict_method
(
data
=
input_text
if
module
.
name
==
"lac"
and
extra
.
get
(
"user_dict"
,
[])
!=
[]:
res
=
predict_method
(
data
=
data
,
user_dict
=
user_dict
,
user_dict
=
extra
.
get
(
"user_dict"
,
[])[
0
]
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
for
path
in
extra
:
os
.
remove
(
path
)
else
:
res
=
predict_method
(
data
=
data
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
return
results
return
{
"results"
:
"Please check data format!"
}
finally
:
user_dict
=
extra
.
get
(
"user_dict"
,
[])
for
item
in
user_dict
:
if
os
.
path
.
exists
(
item
):
os
.
remove
(
item
)
return
{
"results"
:
res
}
def
predict_classification
(
module
,
input_img
,
batch_size
):
def
predict_classification
(
module
,
input_img
,
id
,
batch_size
,
extra
=
{}
):
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
...
...
@@ -133,31 +92,35 @@ def predict_classification(module, input_img, batch_size):
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
finally
:
for
item
in
input_img
[
"image"
]:
if
os
.
path
.
exists
(
item
):
os
.
remove
(
item
)
return
results
def
predict_gan
(
module
,
input_img
,
id
,
batch_size
,
extra
=
{}):
# special
output_folder
=
module
.
name
.
split
(
"_"
)[
0
]
+
"_"
+
"output"
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
extra
.
update
({
"image"
:
input_img
})
input_img
=
{
"image"
:
input_img
}
results
=
predict_method
(
data
=
input_img
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
data
=
extra
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
finally
:
base64_list
=
[]
results_pack
=
[]
input_img
=
input_img
.
get
(
"image"
,
[])
for
index
in
range
(
len
(
input_img
)):
# special
item
=
input_img
[
index
]
with
open
(
os
.
path
.
join
(
output_folder
,
item
),
"rb"
)
as
fp
:
# special
output_file
=
results
[
index
].
split
(
" "
)[
-
1
]
with
open
(
output_file
,
"rb"
)
as
fp
:
b_head
=
"data:image/"
+
item
.
split
(
"."
)[
-
1
]
+
";base64"
b_body
=
base64
.
b64encode
(
fp
.
read
())
b_body
=
str
(
b_body
).
replace
(
"b'"
,
""
).
replace
(
"'"
,
""
)
...
...
@@ -168,11 +131,11 @@ def predict_gan(module, input_img, id, batch_size, extra={}):
results
[
index
].
update
({
"base64"
:
b_img
})
results_pack
.
append
(
results
[
index
])
os
.
remove
(
item
)
os
.
remove
(
os
.
path
.
join
(
output_folder
,
item
)
)
os
.
remove
(
output_file
)
return
results_pack
def
predict_object_detection
(
module
,
input_img
,
id
,
batch_size
):
def
predict_object_detection
(
module
,
input_img
,
id
,
batch_size
,
extra
=
{}
):
output_folder
=
"output"
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
...
...
@@ -185,6 +148,7 @@ def predict_object_detection(module, input_img, id, batch_size):
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
finally
:
base64_list
=
[]
results_pack
=
[]
input_img
=
input_img
.
get
(
"image"
,
[])
...
...
@@ -205,8 +169,7 @@ def predict_object_detection(module, input_img, id, batch_size):
return
results_pack
def
predict_semantic_segmentation
(
module
,
input_img
,
id
,
batch_size
):
# special
def
predict_semantic_segmentation
(
module
,
input_img
,
id
,
batch_size
,
extra
=
{}):
output_folder
=
module
.
name
.
split
(
"_"
)[
-
1
]
+
"_"
+
"output"
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
...
...
@@ -219,6 +182,7 @@ def predict_semantic_segmentation(module, input_img, id, batch_size):
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
finally
:
base64_list
=
[]
results_pack
=
[]
input_img
=
input_img
.
get
(
"image"
,
[])
...
...
@@ -227,7 +191,6 @@ def predict_semantic_segmentation(module, input_img, id, batch_size):
item
=
input_img
[
index
]
output_file_path
=
""
with
open
(
results
[
index
][
"processed"
],
"rb"
)
as
fp
:
# special
b_head
=
"data:image/png;base64"
b_body
=
base64
.
b64encode
(
fp
.
read
())
b_body
=
str
(
b_body
).
replace
(
"b'"
,
""
).
replace
(
"'"
,
""
)
...
...
@@ -236,8 +199,8 @@ def predict_semantic_segmentation(module, input_img, id, batch_size):
output_file_path
=
results
[
index
][
"processed"
]
results
[
index
][
"origin"
]
=
results
[
index
][
"origin"
].
replace
(
id
+
"_"
,
""
)
results
[
index
][
"processed"
]
=
results
[
index
][
"processed"
].
replace
(
id
+
"_"
,
""
)
results
[
index
][
"processed"
]
=
results
[
index
][
"processed"
].
replace
(
id
+
"_"
,
""
)
results
[
index
].
update
({
"base64"
:
b_img
})
results_pack
.
append
(
results
[
index
])
os
.
remove
(
item
)
...
...
@@ -274,14 +237,18 @@ def create_app():
module_info
.
update
({
"cv_module"
:
[{
"Choose..."
:
"Choose..."
}]})
for
item
in
cv_module
:
module_info
[
"cv_module"
].
append
({
item
:
item
})
module_info
.
update
({
"Choose..."
:
[{
"请先选择分类"
:
"Choose..."
}]})
return
{
"module_info"
:
module_info
}
@
app_instance
.
route
(
"/predict/image/<module_name>"
,
methods
=
[
"POST"
])
def
predict_image
(
module_name
):
if
request
.
path
.
split
(
"/"
)[
-
1
]
not
in
cv_module
:
return
{
"error"
:
"Module {} is not available."
.
format
(
module_name
)}
req_id
=
request
.
data
.
get
(
"id"
)
global
use_gpu
,
batch_size_dict
img_base64
=
request
.
form
.
getlist
(
"image"
)
extra_info
=
{}
for
item
in
list
(
request
.
form
.
keys
()):
extra_info
.
update
({
item
:
request
.
form
.
getlist
(
item
)})
file_name_list
=
[]
if
img_base64
!=
[]:
for
item
in
img_base64
:
...
...
@@ -310,36 +277,34 @@ def create_app():
module_type
=
module
.
type
.
split
(
"/"
)[
-
1
].
replace
(
"-"
,
"_"
).
lower
()
predict_func
=
eval
(
"predict_"
+
module_type
)
batch_size
=
batch_size_dict
.
get
(
module_name
,
1
)
results
=
predict_func
(
module
,
file_name_list
,
req_id
,
batch_size
)
results
=
predict_func
(
module
,
file_name_list
,
req_id
,
batch_size
,
extra_info
)
r
=
{
"results"
:
str
(
results
)}
return
r
@
app_instance
.
route
(
"/predict/text/<module_name>"
,
methods
=
[
"POST"
])
def
predict_text
(
module_name
):
if
request
.
path
.
split
(
"/"
)[
-
1
]
not
in
nlp_module
:
return
{
"error"
:
"Module {} is not available."
.
format
(
module_name
)}
req_id
=
request
.
data
.
get
(
"id"
)
global
use_gpu
if
module_name
==
"simnet_bow"
:
text_1
=
request
.
form
.
getlist
(
"text_1"
)
text_2
=
request
.
form
.
getlist
(
"text_2"
)
data
=
[{
"text_1"
:
text_1
},
{
"text_2"
:
text_2
}]
else
:
data
=
request
.
form
.
getlist
(
"text"
)
file
=
request
.
files
.
getlist
(
"user_dict"
)
inputs
=
{}
for
item
in
list
(
request
.
form
.
keys
()):
inputs
.
update
({
item
:
request
.
form
.
getlist
(
item
)})
files
=
{}
for
file_key
in
list
(
request
.
files
.
keys
()):
files
[
file_key
]
=
[]
for
file
in
request
.
files
.
getlist
(
file_key
):
file_name
=
req_id
+
"_"
+
file
.
filename
files
[
file_key
].
append
(
file_name
)
file
.
save
(
file_name
)
module
=
TextModelService
.
get_module
(
module_name
)
predict_func_name
=
nlp_module_method
.
get
(
module_name
,
""
)
if
predict_func_name
!=
""
:
predict_func
=
eval
(
predict_func_name
)
else
:
module_type
=
module
.
type
.
split
(
"/"
)[
-
1
].
replace
(
"-"
,
"_"
).
lower
()
predict_func
=
eval
(
"predict_"
+
module_type
)
file_list
=
[]
for
item
in
file
:
file_path
=
req_id
+
"_"
+
item
.
filename
file_list
.
append
(
file_path
)
item
.
save
(
file_path
)
batch_size
=
batch_size_dict
.
get
(
module_name
,
1
)
results
=
predict_func
(
module
,
data
,
batch_size
,
file_list
)
return
{
"results"
:
results
}
results
=
predict_nlp
(
module
=
module
,
input_text
=
inputs
,
req_id
=
req_id
,
batch_size
=
batch_size_dict
.
get
(
module_name
,
1
),
extra
=
files
)
return
results
return
app_instance
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录