Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
3ed9bd13
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3ed9bd13
编写于
11月 04, 2019
作者:
Z
zhangxuefei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/PaddleHub
into develop
上级
5c8a6679
61fe956c
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
564 addition
and
44 deletion
+564
-44
paddlehub/commands/serving.py
paddlehub/commands/serving.py
+68
-11
paddlehub/module/module.py
paddlehub/module/module.py
+7
-5
paddlehub/serving/app.py
paddlehub/serving/app.py
+53
-17
paddlehub/serving/app_single.py
paddlehub/serving/app_single.py
+401
-0
paddlehub/serving/templates/main.html
paddlehub/serving/templates/main.html
+28
-10
paddlehub/serving/templates/serving_config.json
paddlehub/serving/templates/serving_config.json
+2
-1
setup.py
setup.py
+5
-0
未找到文件。
paddlehub/commands/serving.py
浏览文件 @
3ed9bd13
...
...
@@ -18,13 +18,12 @@ from __future__ import division
from
__future__
import
print_function
import
argparse
import
subprocess
import
shlex
import
os
import
platform
import
socket
import
json
import
paddlehub
as
hub
from
paddlehub.commands.base_command
import
BaseCommand
,
ENTRY
from
paddlehub.serving
import
app
class
ServingCommand
(
BaseCommand
):
...
...
@@ -41,33 +40,56 @@ class ServingCommand(BaseCommand):
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
parser
.
add_argument
(
"command"
)
self
.
parser
.
add_argument
(
"sub_command"
)
self
.
sub_parse
=
self
.
parser
.
add_mutually_exclusive_group
(
required
=
False
)
self
.
sub_parse
.
add_argument
(
"--start"
,
action
=
"store_true"
)
self
.
parser
.
add_argument
(
"--use_gpu"
,
action
=
"store_true"
,
default
=
False
)
self
.
parser
.
add_argument
(
"--use_multiprocess"
,
action
=
"store_true"
,
default
=
False
)
self
.
parser
.
add_argument
(
"--modules"
,
"-m"
,
nargs
=
"+"
)
self
.
parser
.
add_argument
(
"--config"
,
"-c"
,
nargs
=
"+"
)
self
.
parser
.
add_argument
(
"--port"
,
"-p"
,
nargs
=
"+"
,
default
=
[
8888
])
self
.
parser
.
add_argument
(
"--port"
,
"-p"
,
nargs
=
"+"
,
default
=
[
8866
])
@
staticmethod
def
is_port_occupied
(
ip
,
port
):
s
=
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
)
try
:
s
.
connect
((
ip
,
int
(
port
)))
s
.
shutdown
(
2
)
return
True
except
:
return
False
@
staticmethod
def
preinstall_modules
(
modules
):
configs
=
[]
module_exist
=
{}
if
modules
is
not
None
:
for
module
in
modules
:
module_name
=
module
if
"=="
not
in
module
else
\
module
.
split
(
"=="
)[
0
]
module_version
=
None
if
"=="
not
in
module
else
\
module
.
split
(
"=="
)[
1
]
if
module_exist
.
get
(
module_name
,
""
)
!=
""
:
print
(
module_name
,
"=="
,
module_exist
.
get
(
module_name
),
" will be ignored cause new version is specified."
)
configs
.
pop
()
module_exist
.
update
({
module_name
:
module_version
})
try
:
m
=
hub
.
Module
(
name
=
module_name
,
version
=
module_version
)
method_name
=
m
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
if
method_name
==
""
:
raise
RuntimeError
(
"{} cannot be use for "
"predicting"
.
format
(
module_name
))
configs
.
append
({
"module"
:
module_name
,
"version"
:
m
.
version
,
"category"
:
str
(
m
.
type
).
split
(
"/"
)[
0
].
upper
()
})
except
Exception
as
err
:
pass
print
(
err
,
", start Hub-Serving unsuccessfully."
)
exit
(
1
)
return
configs
@
staticmethod
...
...
@@ -78,8 +100,24 @@ class ServingCommand(BaseCommand):
if
os
.
path
.
exists
(
config_file
):
with
open
(
config_file
,
"r"
)
as
fp
:
configs
=
json
.
load
(
fp
)
use_multiprocess
=
configs
.
get
(
"use_multiprocess"
,
False
)
if
use_multiprocess
is
True
:
if
platform
.
system
()
==
"Windows"
:
print
(
"Warning: Windows cannot use multiprocess working "
"mode, Hub-Serving will switch to single process mode"
)
from
paddlehub.serving
import
app_single
as
app
else
:
from
paddlehub.serving
import
app
else
:
from
paddlehub.serving
import
app_single
as
app
use_gpu
=
configs
.
get
(
"use_gpu"
,
False
)
port
=
configs
.
get
(
"port"
,
8888
)
port
=
configs
.
get
(
"port"
,
8866
)
if
ServingCommand
.
is_port_occupied
(
"127.0.0.1"
,
port
)
is
True
:
print
(
"Port %s is occupied, please change it."
%
(
port
))
return
False
configs
=
configs
.
get
(
"modules_info"
)
module
=
[
str
(
i
[
"module"
])
+
"=="
+
str
(
i
[
"version"
])
...
...
@@ -92,10 +130,23 @@ class ServingCommand(BaseCommand):
else
:
print
(
"config_file "
,
config_file
,
"not exists."
)
else
:
if
args
.
use_multiprocess
is
True
:
if
platform
.
system
()
==
"Windows"
:
print
(
"Warning: Windows cannot use multiprocess working "
"mode, Hub-Serving will switch to single process mode"
)
from
paddlehub.serving
import
app_single
as
app
else
:
from
paddlehub.serving
import
app
else
:
from
paddlehub.serving
import
app_single
as
app
module
=
args
.
modules
if
module
is
not
None
:
use_gpu
=
args
.
use_gpu
port
=
args
.
port
[
0
]
if
ServingCommand
.
is_port_occupied
(
"127.0.0.1"
,
port
)
is
True
:
print
(
"Port %s is occupied, please change it."
%
(
port
))
return
False
module_info
=
ServingCommand
.
preinstall_modules
(
module
)
[
item
.
update
({
...
...
@@ -111,9 +162,10 @@ class ServingCommand(BaseCommand):
def
show_help
():
str
=
"serving <option>
\n
"
str
+=
"
\t
Manage PaddleHub-Serving.
\n
"
str
+=
"
option
:
\n
"
str
+=
"
--
start
\n
"
str
+=
"
sub command
:
\n
"
str
+=
"start
\n
"
str
+=
"
\t
Start PaddleHub-Serving if specifies this parameter.
\n
"
str
+=
"option:
\n
"
str
+=
"--modules/-m [module1==version, module2==version...]
\n
"
str
+=
"
\t
Pre-install modules via this parameter list.
\n
"
str
+=
"--port/-p XXXX
\n
"
...
...
@@ -126,8 +178,13 @@ class ServingCommand(BaseCommand):
print
(
str
)
def
execute
(
self
,
argv
):
try
:
args
=
self
.
parser
.
parse_args
()
if
args
.
start
is
True
:
except
:
print
(
"Please refer to the instructions below."
)
ServingCommand
.
show_help
()
return
False
if
args
.
sub_command
==
"start"
:
ServingCommand
.
start_serving
(
args
)
else
:
ServingCommand
.
show_help
()
...
...
paddlehub/module/module.py
浏览文件 @
3ed9bd13
...
...
@@ -155,7 +155,8 @@ class Module(object):
module_name
=
name
,
module_version
=
version
,
extra
=
extra
)
if
not
result
:
logger
.
error
(
tips
)
exit
(
1
)
raise
RuntimeError
(
tips
)
else
:
logger
.
info
(
tips
)
self
.
_init_with_module_file
(
module_dir
[
0
])
...
...
@@ -165,7 +166,8 @@ class Module(object):
url
,
save_path
=
"."
)
if
not
result
:
logger
.
error
(
tips
)
exit
(
1
)
raise
RuntimeError
(
tips
)
else
:
self
.
_init_with_module_file
(
module_dir
)
def
_dump_processor
(
self
):
...
...
paddlehub/serving/app.py
浏览文件 @
3ed9bd13
...
...
@@ -185,24 +185,51 @@ def create_app():
@
app_instance
.
before_request
def
before_request
():
request
.
data
=
{
"id"
:
str
(
time
.
time
())}
request
.
data
=
{
"id"
:
utils
.
md5
(
request
.
remote_addr
+
str
(
time
.
time
()))}
print
(
request
.
remote_addr
)
pass
@
app_instance
.
route
(
"/get/modules"
,
methods
=
[
"GET"
,
"POST"
])
def
get_modules_info
():
global
nlp_module
,
cv_module
module_info
=
{}
if
len
(
nlp_module
)
>
0
:
module_info
.
update
({
"nlp_module"
:
[{
"Choose..."
:
"Choose..."
}]})
for
item
in
nlp_module
:
module_info
[
"nlp_module"
].
append
({
item
:
item
})
if
len
(
cv_module
)
>
0
:
module_info
.
update
({
"cv_module"
:
[{
"Choose..."
:
"Choose..."
}]})
for
item
in
cv_module
:
module_info
[
"cv_module"
].
append
({
item
:
item
})
module_info
.
update
({
"Choose..."
:
[{
"请先选择分类"
:
"Choose..."
}]})
return
{
"module_info"
:
module_info
}
@
app_instance
.
route
(
"/predict/image/<module_name>"
,
methods
=
[
"POST"
])
def
predict_iamge
(
module_name
):
global
results_dict
req_id
=
request
.
data
.
get
(
"id"
)
img_base64
=
request
.
form
.
get
(
"input_img"
,
""
)
received_file_name
=
request
.
form
.
get
(
"input_file"
,
""
)
ext
=
received_file_name
.
split
(
"."
)[
-
1
]
if
ext
==
""
:
img_base64
=
request
.
form
.
get
(
"image"
,
""
)
if
img_base64
!=
""
:
img_base64
=
request
.
form
.
get
(
"image"
,
""
)
ext
=
img_base64
.
split
(
";"
)[
0
].
split
(
"/"
)[
-
1
]
if
ext
not
in
[
"jpeg"
,
"jpg"
,
"png"
]:
return
{
"result"
:
"Unrecognized file type"
}
score
=
time
.
time
()
filename
=
utils
.
md5
(
str
(
time
.
time
())
+
str
(
img_base64
))
+
"."
+
ext
base64_head
=
img_base64
.
split
(
','
)[
0
]
img_data
=
base64
.
b64decode
(
img_base64
.
split
(
','
)[
-
1
])
with
open
(
filename
,
"wb"
)
as
fp
:
fp
.
write
(
img_data
)
else
:
file
=
request
.
files
[
"image"
]
filename
=
file
.
filename
ext
=
file
.
filename
.
split
(
"."
)[
-
1
]
if
ext
not
in
[
"jpeg"
,
"jpg"
,
"png"
]:
return
{
"result"
:
"Unrecognized file type"
}
base64_head
=
"data:image/"
+
ext
+
";base64"
filename
=
utils
.
md5
(
filename
)
+
'.'
+
ext
file
.
save
(
filename
)
score
=
time
.
time
()
file_list
=
[
filename
]
if
queues_dict
[
module_name
].
qsize
(
)
+
1
>
queues_dict
[
module_name
].
get_attribute
(
"maxsize"
):
...
...
@@ -211,9 +238,14 @@ def create_app():
data_num
=
len
(
file_list
)
results
=
[]
result_len
=
0
start_time
=
time
.
time
()
while
result_len
!=
data_num
:
result_len
=
len
(
results_dict
.
get
(
req_id
,
[]))
if
time
.
time
()
-
start_time
>
time_out
:
results_dict
.
pop
(
req_id
,
None
)
return
{
"result"
:
"Request time out."
}
results
=
results_dict
.
get
(
req_id
)
results_dict
.
pop
(
req_id
,
None
)
results
=
[
i
[
1
]
for
i
in
sorted
(
results
,
key
=
lambda
k
:
k
[
0
])]
filename
=
results
[
0
].
get
(
"path"
)
ext
=
filename
.
split
(
"."
)[
-
1
]
...
...
@@ -225,7 +257,7 @@ def create_app():
os
.
remove
(
filename
)
os
.
remove
(
output_file
)
results
=
{
"
border
"
:
"
desc
"
:
str
(
results
[
0
][
"data"
]),
"output_img"
:
base64_head
+
","
+
str
(
output_img_base64
).
replace
(
...
...
@@ -244,7 +276,7 @@ def create_app():
def
predict_text
(
module_name
):
global
results_dict
,
queues_dict
req_id
=
request
.
data
.
get
(
"id"
)
data_list
=
request
.
form
.
get
(
"
input_
text"
)
data_list
=
request
.
form
.
get
(
"text"
)
score
=
time
.
time
()
data_list
=
data_list
.
splitlines
()
data_temp
=
[]
...
...
@@ -261,14 +293,17 @@ def create_app():
if
data_num
+
queues_dict
[
module_name
].
qsize
(
)
>
queues_dict
[
module_name
].
get_attribute
(
"maxsize"
):
return
{
"result"
:
"Too many visitors now, please come back later."
}
start
=
time
.
time
()
data_2_item
(
data_list
,
req_id
,
score
,
module_name
)
results
=
[]
result_len
=
0
start_time
=
time
.
time
()
while
result_len
!=
data_num
:
result_len
=
len
(
results_dict
.
get
(
req_id
,
[]))
if
time
.
time
()
-
start_time
>
time_out
:
results_dict
.
pop
(
req_id
,
None
)
return
{
"result"
:
"Request time out."
}
results
=
results_dict
.
get
(
req_id
)
results_dict
.
pop
(
req_id
,
None
)
results
=
[
i
[
1
]
for
i
in
sorted
(
results
,
key
=
lambda
k
:
k
[
0
])]
return
{
"result"
:
results
}
...
...
@@ -302,8 +337,9 @@ def config_with_file(configs):
queue_name_list
.
append
(
item
[
"module"
])
def
run
(
is_use_gpu
=
False
,
configs
=
None
,
port
=
8888
):
global
use_gpu
def
run
(
is_use_gpu
=
False
,
configs
=
None
,
port
=
8866
,
timeout
=
60
):
global
use_gpu
,
time_out
time_out
=
timeout
use_gpu
=
is_use_gpu
if
configs
is
not
None
:
config_with_file
(
configs
)
...
...
paddlehub/serving/app_single.py
0 → 100644
浏览文件 @
3ed9bd13
# coding: utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
flask
import
Flask
,
request
,
render_template
from
paddlehub.serving.model_service.text_model_service
import
TextModelService
from
paddlehub.serving.model_service.image_model_service
import
ImageModelService
from
paddlehub.common
import
utils
# from model_service.text_model_service import TextModelService
# from model_service.image_model_service import ImageModelService
import
time
import
os
import
base64
import
logging
nlp_module_method
=
{
"lac"
:
"predict_lexical_analysis"
,
"simnet_bow"
:
"predict_sentiment_analysis"
,
"lm_lstm"
:
"predict_pretrained_model"
,
"senta_lstm"
:
"predict_pretrained_model"
,
"senta_gru"
:
"predict_pretrained_model"
,
"senta_cnn"
:
"predict_pretrained_model"
,
"senta_bow"
:
"predict_pretrained_model"
,
"senta_bilstm"
:
"predict_pretrained_model"
,
"emotion_detection_textcnn"
:
"predict_pretrained_model"
}
cv_module_method
=
{
"vgg19_imagenet"
:
"predict_classification"
,
"vgg16_imagenet"
:
"predict_classification"
,
"vgg13_imagenet"
:
"predict_classification"
,
"vgg11_imagenet"
:
"predict_classification"
,
"shufflenet_v2_imagenet"
:
"predict_classification"
,
"se_resnext50_32x4d_imagenet"
:
"predict_classification"
,
"se_resnext101_32x4d_imagenet"
:
"predict_classification"
,
"resnet_v2_50_imagenet"
:
"predict_classification"
,
"resnet_v2_34_imagenet"
:
"predict_classification"
,
"resnet_v2_18_imagenet"
:
"predict_classification"
,
"resnet_v2_152_imagenet"
:
"predict_classification"
,
"resnet_v2_101_imagenet"
:
"predict_classification"
,
"pnasnet_imagenet"
:
"predict_classification"
,
"nasnet_imagenet"
:
"predict_classification"
,
"mobilenet_v2_imagenet"
:
"predict_classification"
,
"googlenet_imagenet"
:
"predict_classification"
,
"alexnet_imagenet"
:
"predict_classification"
,
"yolov3_coco2017"
:
"predict_object_detection"
,
"ultra_light_fast_generic_face_detector_1mb_640"
:
"predict_object_detection"
,
"ultra_light_fast_generic_face_detector_1mb_320"
:
"predict_object_detection"
,
"ssd_mobilenet_v1_pascal"
:
"predict_object_detection"
,
"pyramidbox_face_detection"
:
"predict_object_detection"
,
"faster_rcnn_coco2017"
:
"predict_object_detection"
,
"cyclegan_cityscapes"
:
"predict_gan"
,
"deeplabv3p_xception65_humanseg"
:
"predict_semantic_segmentation"
,
"ace2p"
:
"predict_semantic_segmentation"
}
def
predict_sentiment_analysis
(
module
,
input_text
,
batch_size
,
extra
=
None
):
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
data
=
input_text
[
0
]
data
.
update
(
input_text
[
1
])
results
=
predict_method
(
data
=
data
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
return
results
def
predict_pretrained_model
(
module
,
input_text
,
batch_size
,
extra
=
None
):
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
data
=
{
"text"
:
input_text
}
results
=
predict_method
(
data
=
data
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
return
results
def
predict_lexical_analysis
(
module
,
input_text
,
batch_size
,
extra
=
[]):
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
data
=
{
"text"
:
input_text
}
try
:
if
extra
==
[]:
results
=
predict_method
(
data
=
data
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
else
:
user_dict
=
extra
[
0
]
results
=
predict_method
(
data
=
data
,
user_dict
=
user_dict
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
for
path
in
extra
:
os
.
remove
(
path
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
return
results
def
predict_classification
(
module
,
input_img
,
batch_size
):
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
input_img
=
{
"image"
:
input_img
}
results
=
predict_method
(
data
=
input_img
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
return
results
def
predict_gan
(
module
,
input_img
,
id
,
batch_size
,
extra
=
{}):
# special
output_folder
=
module
.
name
.
split
(
"_"
)[
0
]
+
"_"
+
"output"
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
input_img
=
{
"image"
:
input_img
}
results
=
predict_method
(
data
=
input_img
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
base64_list
=
[]
results_pack
=
[]
input_img
=
input_img
.
get
(
"image"
,
[])
for
index
in
range
(
len
(
input_img
)):
# special
item
=
input_img
[
index
]
with
open
(
os
.
path
.
join
(
output_folder
,
item
),
"rb"
)
as
fp
:
# special
b_head
=
"data:image/"
+
item
.
split
(
"."
)[
-
1
]
+
";base64"
b_body
=
base64
.
b64encode
(
fp
.
read
())
b_body
=
str
(
b_body
).
replace
(
"b'"
,
""
).
replace
(
"'"
,
""
)
b_img
=
b_head
+
","
+
b_body
base64_list
.
append
(
b_img
)
results
[
index
]
=
results
[
index
].
replace
(
id
+
"_"
,
""
)
results
[
index
]
=
{
"path"
:
results
[
index
]}
results
[
index
].
update
({
"base64"
:
b_img
})
results_pack
.
append
(
results
[
index
])
os
.
remove
(
item
)
os
.
remove
(
os
.
path
.
join
(
output_folder
,
item
))
return
results_pack
def
predict_object_detection
(
module
,
input_img
,
id
,
batch_size
):
output_folder
=
"output"
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
input_img
=
{
"image"
:
input_img
}
results
=
predict_method
(
data
=
input_img
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
base64_list
=
[]
results_pack
=
[]
input_img
=
input_img
.
get
(
"image"
,
[])
for
index
in
range
(
len
(
input_img
)):
item
=
input_img
[
index
]
with
open
(
os
.
path
.
join
(
output_folder
,
item
),
"rb"
)
as
fp
:
b_head
=
"data:image/"
+
item
.
split
(
"."
)[
-
1
]
+
";base64"
b_body
=
base64
.
b64encode
(
fp
.
read
())
b_body
=
str
(
b_body
).
replace
(
"b'"
,
""
).
replace
(
"'"
,
""
)
b_img
=
b_head
+
","
+
b_body
base64_list
.
append
(
b_img
)
results
[
index
][
"path"
]
=
results
[
index
][
"path"
].
replace
(
id
+
"_"
,
""
)
results
[
index
].
update
({
"base64"
:
b_img
})
results_pack
.
append
(
results
[
index
])
os
.
remove
(
item
)
os
.
remove
(
os
.
path
.
join
(
output_folder
,
item
))
return
results_pack
def
predict_semantic_segmentation
(
module
,
input_img
,
id
,
batch_size
):
# special
output_folder
=
module
.
name
.
split
(
"_"
)[
-
1
]
+
"_"
+
"output"
global
use_gpu
method_name
=
module
.
desc
.
attr
.
map
.
data
[
'default_signature'
].
s
predict_method
=
getattr
(
module
,
method_name
)
try
:
input_img
=
{
"image"
:
input_img
}
results
=
predict_method
(
data
=
input_img
,
use_gpu
=
use_gpu
,
batch_size
=
batch_size
)
except
Exception
as
err
:
curr
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time
.
localtime
(
time
.
time
()))
print
(
curr
,
" - "
,
err
)
return
{
"result"
:
"Please check data format!"
}
base64_list
=
[]
results_pack
=
[]
input_img
=
input_img
.
get
(
"image"
,
[])
for
index
in
range
(
len
(
input_img
)):
# special
item
=
input_img
[
index
]
with
open
(
results
[
index
][
"processed"
],
"rb"
)
as
fp
:
# special
b_head
=
"data:image/png;base64"
b_body
=
base64
.
b64encode
(
fp
.
read
())
b_body
=
str
(
b_body
).
replace
(
"b'"
,
""
).
replace
(
"'"
,
""
)
b_img
=
b_head
+
","
+
b_body
base64_list
.
append
(
b_img
)
results
[
index
][
"origin"
]
=
results
[
index
][
"origin"
].
replace
(
id
+
"_"
,
""
)
results
[
index
][
"processed"
]
=
results
[
index
][
"processed"
].
replace
(
id
+
"_"
,
""
)
results
[
index
].
update
({
"base64"
:
b_img
})
results_pack
.
append
(
results
[
index
])
os
.
remove
(
item
)
os
.
remove
(
results
[
index
][
"processed"
])
return
results_pack
def
create_app
():
app_instance
=
Flask
(
__name__
)
app_instance
.
config
[
"JSON_AS_ASCII"
]
=
False
gunicorn_logger
=
logging
.
getLogger
(
'gunicorn.error'
)
app_instance
.
logger
.
handlers
=
gunicorn_logger
.
handlers
app_instance
.
logger
.
setLevel
(
gunicorn_logger
.
level
)
@
app_instance
.
route
(
"/"
,
methods
=
[
"GET"
,
"POST"
])
def
index
():
return
render_template
(
"main.html"
)
@
app_instance
.
before_request
def
before_request
():
request
.
data
=
{
"id"
:
utils
.
md5
(
request
.
remote_addr
+
str
(
time
.
time
()))}
pass
@
app_instance
.
route
(
"/get/modules"
,
methods
=
[
"GET"
,
"POST"
])
def
get_modules_info
():
global
nlp_module
,
cv_module
module_info
=
{}
if
len
(
nlp_module
)
>
0
:
module_info
.
update
({
"nlp_module"
:
[{
"Choose..."
:
"Choose..."
}]})
for
item
in
nlp_module
:
module_info
[
"nlp_module"
].
append
({
item
:
item
})
if
len
(
cv_module
)
>
0
:
module_info
.
update
({
"cv_module"
:
[{
"Choose..."
:
"Choose..."
}]})
for
item
in
cv_module
:
module_info
[
"cv_module"
].
append
({
item
:
item
})
module_info
.
update
({
"Choose..."
:
[{
"请先选择分类"
:
"Choose..."
}]})
return
{
"module_info"
:
module_info
}
@
app_instance
.
route
(
"/predict/image/<module_name>"
,
methods
=
[
"POST"
])
def
predict_image
(
module_name
):
req_id
=
request
.
data
.
get
(
"id"
)
global
use_gpu
,
batch_size_dict
img_base64
=
request
.
form
.
getlist
(
"image"
)
file_name_list
=
[]
if
img_base64
!=
[]:
for
item
in
img_base64
:
ext
=
item
.
split
(
";"
)[
0
].
split
(
"/"
)[
-
1
]
if
ext
not
in
[
"jpeg"
,
"jpg"
,
"png"
]:
return
{
"result"
:
"Unrecognized file type"
}
filename
=
req_id
+
"_"
\
+
utils
.
md5
(
str
(
time
.
time
())
+
item
[
0
:
20
])
\
+
"."
\
+
ext
img_data
=
base64
.
b64decode
(
item
.
split
(
','
)[
-
1
])
file_name_list
.
append
(
filename
)
with
open
(
filename
,
"wb"
)
as
fp
:
fp
.
write
(
img_data
)
else
:
file
=
request
.
files
.
getlist
(
"image"
)
for
item
in
file
:
file_name
=
req_id
+
"_"
+
item
.
filename
item
.
save
(
file_name
)
file_name_list
.
append
(
file_name
)
module
=
ImageModelService
.
get_module
(
module_name
)
predict_func_name
=
cv_module_method
.
get
(
module_name
,
""
)
if
predict_func_name
!=
""
:
predict_func
=
eval
(
predict_func_name
)
else
:
module_type
=
module
.
type
.
split
(
"/"
)[
-
1
].
replace
(
"-"
,
"_"
).
lower
()
predict_func
=
eval
(
"predict_"
+
module_type
)
batch_size
=
batch_size_dict
.
get
(
module_name
,
1
)
results
=
predict_func
(
module
,
file_name_list
,
req_id
,
batch_size
)
r
=
{
"results"
:
str
(
results
)}
return
r
@
app_instance
.
route
(
"/predict/text/<module_name>"
,
methods
=
[
"POST"
])
def
predict_text
(
module_name
):
req_id
=
request
.
data
.
get
(
"id"
)
global
use_gpu
if
module_name
==
"simnet_bow"
:
text_1
=
request
.
form
.
getlist
(
"text_1"
)
text_2
=
request
.
form
.
getlist
(
"text_2"
)
data
=
[{
"text_1"
:
text_1
},
{
"text_2"
:
text_2
}]
else
:
data
=
request
.
form
.
getlist
(
"text"
)
file
=
request
.
files
.
getlist
(
"user_dict"
)
module
=
TextModelService
.
get_module
(
module_name
)
predict_func_name
=
nlp_module_method
.
get
(
module_name
,
""
)
if
predict_func_name
!=
""
:
predict_func
=
eval
(
predict_func_name
)
else
:
module_type
=
module
.
type
.
split
(
"/"
)[
-
1
].
replace
(
"-"
,
"_"
).
lower
()
predict_func
=
eval
(
"predict_"
+
module_type
)
file_list
=
[]
for
item
in
file
:
file_path
=
req_id
+
"_"
+
item
.
filename
file_list
.
append
(
file_path
)
item
.
save
(
file_path
)
batch_size
=
batch_size_dict
.
get
(
module_name
,
1
)
results
=
predict_func
(
module
,
data
,
batch_size
,
file_list
)
return
{
"results"
:
results
}
return
app_instance
def
config_with_file
(
configs
):
global
nlp_module
,
cv_module
,
batch_size_dict
nlp_module
=
[]
cv_module
=
[]
batch_size_dict
=
{}
for
item
in
configs
:
print
(
item
)
if
item
[
"category"
]
==
"CV"
:
cv_module
.
append
(
item
[
"module"
])
elif
item
[
"category"
]
==
"NLP"
:
nlp_module
.
append
(
item
[
"module"
])
batch_size_dict
.
update
({
item
[
"module"
]:
item
[
"batch_size"
]})
def
run
(
is_use_gpu
=
False
,
configs
=
None
,
port
=
8866
,
timeout
=
60
):
global
use_gpu
,
time_out
time_out
=
timeout
use_gpu
=
is_use_gpu
if
configs
is
not
None
:
config_with_file
(
configs
)
else
:
print
(
"Start failed cause of missing configuration."
)
return
my_app
=
create_app
()
my_app
.
run
(
host
=
"0.0.0.0"
,
port
=
port
,
debug
=
False
)
print
(
"PaddleHub-Serving has been stopped."
)
if
__name__
==
"__main__"
:
configs
=
[{
'category'
:
'NLP'
,
u
'queue_size'
:
20
,
u
'version'
:
u
'1.0.0'
,
u
'module'
:
'lac'
,
u
'batch_size'
:
20
},
{
'category'
:
'NLP'
,
u
'queue_size'
:
20
,
u
'version'
:
u
'1.0.0'
,
u
'module'
:
'senta_lstm'
,
u
'batch_size'
:
20
},
{
'category'
:
'CV'
,
u
'queue_size'
:
20
,
u
'version'
:
u
'1.0.0'
,
u
'module'
:
'yolov3_coco2017'
,
u
'batch_size'
:
20
},
{
'category'
:
'CV'
,
u
'queue_size'
:
20
,
u
'version'
:
u
'1.0.0'
,
u
'module'
:
'faster_rcnn_coco2017'
,
u
'batch_size'
:
20
}]
run
(
is_use_gpu
=
False
,
configs
=
configs
)
paddlehub/serving/templates/main.html
浏览文件 @
3ed9bd13
...
...
@@ -16,7 +16,8 @@
<html
lang=
"en"
>
<head>
<meta
charset=
"UTF-8"
>
<title>
Title
</title>
<title>
Hub-Serving
</title>
<link
rel=
"shortcut icon"
href=
"https://paddlepaddle-org-cn.bj.bcebos.com/paddle-site-front/favicon.ico"
/>
<link
href=
"https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
rel=
"stylesheet"
integrity=
"sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin=
"anonymous"
>
<script
src=
"https://code.jquery.com/jquery-3.4.1.min.js"
integrity=
"sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="
crossorigin=
"anonymous"
></script>
<script
src=
"https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
integrity=
"sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin=
"anonymous"
></script>
...
...
@@ -35,8 +36,6 @@
<select
class=
"custom-select"
id=
"inputGroupSelect01"
onchange=
"select_category(this.options[this.options.selectedIndex].value)"
>
<option
selected
>
Choose...
</option>
<option
value=
"nlp_module"
>
nlp
</option>
<option
value=
"cv_module"
>
cv
</option>
</select>
</td>
<td
style=
"width: 6%"
></td>
...
...
@@ -61,12 +60,31 @@
</div>
</form>
<script>
module_info
=
{
"
nlp_module
"
:[{
"
Choose...
"
:
"
Choose...
"
},{
"
lac
"
:
"
lac
"
},
{
"
senta_lstm
"
:
"
senta_lstm
"
}],
"
cv_module
"
:[{
"
Choose...
"
:
"
Choose...
"
},{
"
yolov3
"
:
"
yolov3_coco2017
"
},{
"
faster_rcnn
"
:
"
faster_rcnn_coco2017
"
}],
"
Choose...
"
:[{
"
请先选择分类
"
:
"
Choose...
"
}]
};
var
module_info
=
{};
$
.
ajax
({
type
:
"
POST
"
,
url
:
"
/get/modules
"
,
data
:
""
,
dataType
:
"
json
"
,
async
:
false
,
success
:
function
(
res
)
{
module_info
=
res
.
module_info
;
console
.
log
(
res
);
console
.
log
(
"
mo=
"
,
module_info
);
if
(
module_info
.
hasOwnProperty
(
"
nlp_module
"
))
{
s
=
document
.
getElementById
(
"
inputGroupSelect01
"
);
s
.
options
.
add
(
new
Option
(
"
nlp
"
,
"
nlp_module
"
));
}
if
(
module_info
.
hasOwnProperty
(
"
cv_module
"
))
{
s
=
document
.
getElementById
(
"
inputGroupSelect01
"
);
s
.
options
.
add
(
new
Option
(
"
cv
"
,
"
cv_module
"
));
}
}
});
function
get_module_option
(
module_categoty
)
{
options
=
module_info
[
module_categoty
];
html
=
""
;
...
...
@@ -241,7 +259,7 @@
},
success
:
function
(
data
)
{
data
=
data
[
"
result
"
];
document
.
getElementById
(
"
result_text
"
).
value
=
data
[
"
border
"
];
document
.
getElementById
(
"
result_text
"
).
value
=
data
[
"
desc
"
];
document
.
getElementById
(
"
result_img
"
).
src
=
data
[
"
output_img
"
];
}
});
...
...
paddlehub/serving/templates/serving_config.json
浏览文件 @
3ed9bd13
...
...
@@ -26,5 +26,6 @@
}
],
"use_gpu"
:
false
,
"port"
:
8888
"port"
:
8866
,
"use_multiprocess"
:
false
}
setup.py
浏览文件 @
3ed9bd13
...
...
@@ -59,6 +59,11 @@ setup(
]
},
include_package_data
=
True
,
data_files
=
[(
'paddlehub/serving/templates'
,
[
'paddlehub/serving/templates/serving_config.json'
,
'paddlehub/serving/templates/main.html'
])],
include_data_files
=
True
,
# PyPI package information.
classifiers
=
[
'Development Status :: 4 - Beta'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录