提交 35ce738a 编写于 作者: S Steffy-zxf 提交者: Zeyu Chen

Fix README docs (#296)

* uniform file name convention

* update version

* update docs

* update docs

* update docs

* update docs

* update docs

* update docs

* update aistudio demo
上级 9e210839
......@@ -4,22 +4,23 @@
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
[![Version](https://img.shields.io/github/release/PaddlePaddle/PaddleHub.svg)](https://github.com/PaddlePaddle/PaddleHub/releases)
PaddleHub是飞桨预训练模型管理和迁移学习工具,通过PaddleHub开发者可以使用高质量的预训练模型结合Fine-tune API快速完成迁移学习到应用部署的全流程工作。PaddleHub具有以下特性:
PaddleHub是飞桨预训练模型管理和迁移学习工具,通过PaddleHub开发者可以使用高质量的预训练模型结合Fine-tune API快速完成迁移学习到应用部署的全流程工作。其提供了飞桨生态下的高质量预训练模型,涵盖了图像分类、目标检测、词法分析、语义模型、情感分析、视频分类、图像生成、图像分割、文本审核、关键点检测等主流模型。更多模型详情请查看官网:https://www.paddlepaddle.org.cn/hub
* 便捷获取飞桨生态下的高质量预训练模型,涵盖了图像分类、目标检测、词法分析、语义模型、情感分析、视频分类、图像生成、图像分割、文本审核、关键点检测等主流模型。更多模型详情请查看官网:https://www.paddlepaddle.org.cn/hub
* 通过高质量预训练模型与PaddleHub Fine-tune API,只需要少量代码即可实现自然语言处理和计算机视觉场景的深度学习模型,更多Demo请参考以下链接:
[文本分类](./demo/text_classification) [序列标注](./demo/sequence_labeling) [多标签分类](./demo/multi_label_classification) [图像分类](./demo/image_classification) [检索式问答任务](./demo/qa_classification) [回归任务](./demo/regression) [句子语义相似度计算](./demo/sentence_similarity) [阅读理解任务](./demo/reading_comprehension)
基于预训练模型,PaddleHub支持以下功能:
***模型即软件**』的设计理念,通过Python API或命令行实现快速预测,更方便地使用PaddlePaddle模型库,更多介绍请参考教程[PaddleHub命令行工具介绍](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%B7%A5%E5%85%B7)
* PaddleHub提供便捷的服务化部署能力,简单一行命令即可搭建属于自己的模型的API服务,更多详情请参考教程[PaddleHub Serving一键服务化部署](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub-Serving%E4%B8%80%E9%94%AE%E6%9C%8D%E5%8A%A1%E9%83%A8%E7%BD%B2)[使用示例](./demo/serving)
* 支持AutoDL Finetuner超参优化技术, 自动搜索最优模型超参得到更好的模型效果。详情请参考[AutoDL Finetuner超参优化功能教程](./tutorial/autofinetune.md)
* **[模型即软件](#模型即软件)**,通过Python API或命令行实现快速预测,更方便地使用PaddlePaddle模型库。
* **[迁移学习](#迁移学习)**。用户通过Fine-tune API,只需要少量代码即可完成自然语言处理和计算机视觉场景的深度迁移学习。
* **[服务化部署](#服务化部署paddlehub-serving)**,简单一行命令即可搭建属于自己的模型的API服务
* **[超参优化](#超参优化autodl-finetuner)**,自动搜索最优超参,得到更好的模型效果。
## 目录
* [安装](#%E5%AE%89%E8%A3%85)
* [快速体验](#%E5%BF%AB%E9%80%9F%E4%BD%93%E9%AA%8C)
* [教程](#%E6%95%99%E7%A8%8B)
* [特性](#特性)
* [FAQ](#faq)
* [用户交流群](#%E7%94%A8%E6%88%B7%E4%BA%A4%E6%B5%81%E7%BE%A4)
* [更新历史](#%E6%9B%B4%E6%96%B0%E5%8E%86%E5%8F%B2)
......@@ -43,7 +44,7 @@ pip安装方式如下:
```shell
$ pip install paddlehub
```
2. 使用PaddleHub下载数据集、预训练模型等,要求机器可以访问外网。可以使用server_check()可以检查本地与远端PaddleHub-Server的连接状态,使用方法如下:
2. 使用PaddleHub下载数据集、预训练模型等,要求机器可以访问外网。可以使用`server_check()`可以检查本地与远端PaddleHub-Server的连接状态,使用方法如下:
```python
import paddlehub
......@@ -53,22 +54,26 @@ paddlehub.server_check()
```
## 快速体验
安装成功后,执行命令[hub run](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%B7%A5%E5%85%B7#run),可以快速体验PaddleHub无需代码、一键预测的命令行功能,如下三个示例:
## 特性
使用[词法分析](http://www.paddlepaddle.org.cn/hub?filter=category&value=LexicalAnalysis)模型LAC进行分词
### 模型即软件
PaddleHub提出 **模型即软件** 的理念,通过Python API或命令行实现快速预测,更方便地使用PaddlePaddle模型库。
安装PaddleHub成功后,执行命令[hub run](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%B7%A5%E5%85%B7#run),可以快速体验PaddleHub无需代码、一键预测的命令行功能,如下三个示例:
* 使用[词法分析](http://www.paddlepaddle.org.cn/hub?filter=category&value=LexicalAnalysis)模型LAC进行分词
```shell
$ hub run lac --input_text "今天是个好日子"
[{'word': ['今天', '是', '个', '好日子'], 'tag': ['TIME', 'v', 'q', 'n']}]
```
使用[情感分析](http://www.paddlepaddle.org.cn/hub?filter=category&value=SentimentAnalysis)模型Senta对句子进行情感预测
* 使用[情感分析](http://www.paddlepaddle.org.cn/hub?filter=category&value=SentimentAnalysis)模型Senta对句子进行情感预测
```shell
$ hub run senta_bilstm --input_text "今天天气真好"
{'text': '今天天气真好', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9798, 'negative_probs': 0.0202}]
```
使用[目标检测](http://www.paddlepaddle.org.cn/hub?filter=category&value=ObjectDetection)模型 SSD/YOLO v3/Faster RCNN 对图片进行目标检测
* 使用[目标检测](http://www.paddlepaddle.org.cn/hub?filter=category&value=ObjectDetection)模型 SSD/YOLO v3/Faster RCNN 对图片进行目标检测
```shell
$ wget https://paddlehub.bj.bcebos.com/resources/test_object_detection.jpg
$ hub run ssd_mobilenet_v1_pascal --input_path test_object_detection.jpg
......@@ -79,25 +84,36 @@ $ hub run faster_rcnn_coco2017 --input_path test_object_detection.jpg
除了上述三类模型外,PaddleHub还发布了图像分类、语义模型、视频分类、图像生成、图像分割、文本审核、关键点检测等业界主流模型,更多PaddleHub已经发布的模型,请前往 https://www.paddlepaddle.org.cn/hub 查看
## 教程
PaddleHub同时支持安装、卸载、查看模型信息等命令行功能,详细参见[PaddleHub命令行工具介绍](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%B7%A5%E5%85%B7)
### 迁移学习
我们在AI Studio上提供了IPython NoteBook形式的demo,您可以直接在平台上在线体验,链接如下:
迁移学习(Transfer Learning)通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性。PaddleHub提供了Fine-tune API,只需要少量代码即可完成深度学习模型在自然语言处理和计算机视觉场景下的迁移学习。
* 示例合集
PaddleHub提供了使用Finetune-API和预训练模型完成[文本分类](./demo/text_classification)[序列标注](./demo/sequence_labeling)[多标签分类](./demo/multi_label_classification)[图像分类](./demo/image_classification)[检索式问答任务](./demo/qa_classification)[回归任务](./demo/regression)[句子语义相似度计算](./demo/sentence_similarity)[阅读理解任务](./demo/reading_comprehension)等迁移任务的使用示例,详细参见[demo](./demo)
* 场景化使用
PaddleHub在AI Studio上提供了IPython NoteBook形式的demo。用户可以直接在平台上在线体验,链接如下:
|预训练模型|任务类型|数据集|AIStudio链接|备注|
|-|-|-|-|-|
|ResNet|图像分类|猫狗数据集DogCat|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216772)||
|ERNIE|文本分类|中文情感分类数据集ChnSentiCorp|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216764)||
|ERNIE|文本分类|中文新闻分类数据集THUNEWS|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216649)|本教程讲述了如何将自定义数据集加载,并利用Fine-tune API完成文本分类迁移学习。|
|ERNIE|序列标注|中文序列标注数据集MSRA_NER|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216787)||
|ERNIE|序列标注|中文快递单数据集Express|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216683)|本教程讲述了如何将自定义数据集加载,并利用Fine-tune API完成序列标注迁移学习。|
|ERNIE Tiny|文本分类|中文情感分类数据集ChnSentiCorp|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/215599)||
|Senta|文本分类|中文情感分类数据集ChnSentiCorp|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216851)|本教程讲述了任何利用Senta和Fine-tune API完成情感分类迁移学习。|
|Senta|情感分析预测|N/A|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216735)||
|LAC|词法分析|N/A|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/215641)||
|Ultra-Light-Fast-Generic-Face-Detector-1MB|人脸检测|N/A|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216749)||
|ResNet|图像分类|猫狗数据集DogCat|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/147010)||
|ERNIE|文本分类|中文情感分类数据集ChnSentiCorp|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/147006)||
|ERNIE|文本分类|中文新闻分类数据集THUNEWS|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/221999)|本教程讲述了如何将自定义数据集加载,并利用Fine-tune API完成文本分类迁移学习。|
|ERNIE|序列标注|中文序列标注数据集MSRA_NER|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/147009)||
|ERNIE|序列标注|中文快递单数据集Express|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/184200)|本教程讲述了如何将自定义数据集加载,并利用Fine-tune API完成序列标注迁移学习。|
|ERNIE Tiny|文本分类|中文情感分类数据集ChnSentiCorp|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/221971)||
|Senta|文本分类|中文情感分类数据集ChnSentiCorp|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/216846)|本教程讲述了任何利用Senta和Fine-tune API完成情感分类迁移学习。|
|Senta|情感分析预测|N/A|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/215814)||
|LAC|词法分析|N/A|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/215711)||
|Ultra-Light-Fast-Generic-Face-Detector-1MB|人脸检测|N/A|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/215962)||
**NOTE:** `[飞桨PaddleHub](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/79927)`是PaddleHub的官方账号
同时,关于PaddleHub更多信息参考:
关于PaddleHub快捷完成迁移学习,更多信息参考:
[Fine-tune API](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub-Finetune-API)
......@@ -105,12 +121,37 @@ $ hub run faster_rcnn_coco2017 --input_path test_object_detection.jpg
[实现自定义迁移任务](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub:-%E8%87%AA%E5%AE%9A%E4%B9%89Task)
[PaddleHub Serving一键服务化部署](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub-Serving%E4%B8%80%E9%94%AE%E6%9C%8D%E5%8A%A1%E9%83%A8%E7%BD%B2)
[ULMFiT优化策略](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.3/tutorial/strategy_exp.md)
### 服务化部署PaddleHub Serving
PaddleHub提供便捷的服务化部署能力,简单一行命令即可实现模型部署上线以对外提供服务。
PaddleHub Serving启动方式有两种:
* 命令行方式:
```shell
$ hub serving start --modules [Module1==Version1, Module2==Version2, ...]
```
其中选项参数`--modules/-m`表示待部署模型
* 配置文件方式:
```shell
$ hub serving start --config config.json
```
config.json文件包含待部署模型信息等,
关于PaddleHub Serving详细信息参考[PaddleHub Serving一键服务化部署](https://github.com/PaddlePaddle/PaddleHub/wiki/PaddleHub-Serving%E4%B8%80%E9%94%AE%E6%9C%8D%E5%8A%A1%E9%83%A8%E7%BD%B2)
[自动优化超参AutoDL Finetuner使用教程](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.3/tutorial/autofinetune.md)
### 超参优化AutoDL Finetuner
[迁移学习与ULMFiT微调策略](https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.3/tutorial/strategy_exp.md)
深度学习模型往往包含许多的超参数,而这些超参数的取值对模型性能起着至关重要的作用。因为模型参数空间大,目前超参调整都是通过手动,依赖人工经验或者不断尝试,且不同模型、样本数据和场景下不尽相同,所以需要大量尝试,时间成本和资源成本非常浪费。PaddleHub AutoDL Finetuner可以实现自动调整超参数,使得模型性能达到最优水平。它通过多种调优的算法来搜索最优超参。
AutoDL Finetuner详细信息参见[PaddleHub超参优化](./tutorial/autofinetune.md)
## FAQ
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册