Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
2957e638
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2957e638
编写于
5月 24, 2022
作者:
C
chenjian
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete useless files
上级
35da85b7
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
56 addition
and
1057 deletion
+56
-1057
modules/image/keypoint_detection/pp-tinypose/__init__.py
modules/image/keypoint_detection/pp-tinypose/__init__.py
+14
-0
modules/image/keypoint_detection/pp-tinypose/benchmark_utils.py
...s/image/keypoint_detection/pp-tinypose/benchmark_utils.py
+0
-262
modules/image/keypoint_detection/pp-tinypose/det_keypoint_unite_infer.py
...eypoint_detection/pp-tinypose/det_keypoint_unite_infer.py
+0
-185
modules/image/keypoint_detection/pp-tinypose/det_keypoint_unite_utils.py
...eypoint_detection/pp-tinypose/det_keypoint_unite_utils.py
+0
-86
modules/image/keypoint_detection/pp-tinypose/infer.py
modules/image/keypoint_detection/pp-tinypose/infer.py
+22
-133
modules/image/keypoint_detection/pp-tinypose/keypoint_infer.py
...es/image/keypoint_detection/pp-tinypose/keypoint_infer.py
+20
-99
modules/image/keypoint_detection/pp-tinypose/logger.py
modules/image/keypoint_detection/pp-tinypose/logger.py
+0
-68
modules/image/keypoint_detection/pp-tinypose/module.py
modules/image/keypoint_detection/pp-tinypose/module.py
+0
-7
modules/image/keypoint_detection/pp-tinypose/utils.py
modules/image/keypoint_detection/pp-tinypose/utils.py
+0
-217
未找到文件。
modules/image/keypoint_detection/pp-tinypose/__init__.py
浏览文件 @
2957e638
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
glob
import
os
import
os
import
sys
import
sys
...
...
modules/image/keypoint_detection/pp-tinypose/benchmark_utils.py
已删除
100644 → 0
浏览文件 @
35da85b7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
os
from
pathlib
import
Path
import
paddle
import
paddle.inference
as
paddle_infer
CUR_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
LOG_PATH_ROOT
=
f
"
{
CUR_DIR
}
/../../output"
class
PaddleInferBenchmark
(
object
):
def
__init__
(
self
,
config
,
model_info
:
dict
=
{},
data_info
:
dict
=
{},
perf_info
:
dict
=
{},
resource_info
:
dict
=
{},
**
kwargs
):
"""
Construct PaddleInferBenchmark Class to format logs.
args:
config(paddle.inference.Config): paddle inference config
model_info(dict): basic model info
{'model_name': 'resnet50'
'precision': 'fp32'}
data_info(dict): input data info
{'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info(dict): performance result
{'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info(dict):
cpu and gpu resources
{'cpu_rss': 100
'gpu_rss': 100
'gpu_util': 60}
"""
# PaddleInferBenchmark Log Version
self
.
log_version
=
"1.0.3"
# Paddle Version
self
.
paddle_version
=
paddle
.
__version__
self
.
paddle_commit
=
paddle
.
__git_commit__
paddle_infer_info
=
paddle_infer
.
get_version
()
self
.
paddle_branch
=
paddle_infer_info
.
strip
().
split
(
': '
)[
-
1
]
# model info
self
.
model_info
=
model_info
# data info
self
.
data_info
=
data_info
# perf info
self
.
perf_info
=
perf_info
try
:
# required value
self
.
model_name
=
model_info
[
'model_name'
]
self
.
precision
=
model_info
[
'precision'
]
self
.
batch_size
=
data_info
[
'batch_size'
]
self
.
shape
=
data_info
[
'shape'
]
self
.
data_num
=
data_info
[
'data_num'
]
self
.
inference_time_s
=
round
(
perf_info
[
'inference_time_s'
],
4
)
except
:
self
.
print_help
()
raise
ValueError
(
"Set argument wrong, please check input argument and its type"
)
self
.
preprocess_time_s
=
perf_info
.
get
(
'preprocess_time_s'
,
0
)
self
.
postprocess_time_s
=
perf_info
.
get
(
'postprocess_time_s'
,
0
)
self
.
with_tracker
=
True
if
'tracking_time_s'
in
perf_info
else
False
self
.
tracking_time_s
=
perf_info
.
get
(
'tracking_time_s'
,
0
)
self
.
total_time_s
=
perf_info
.
get
(
'total_time_s'
,
0
)
self
.
inference_time_s_90
=
perf_info
.
get
(
"inference_time_s_90"
,
""
)
self
.
inference_time_s_99
=
perf_info
.
get
(
"inference_time_s_99"
,
""
)
self
.
succ_rate
=
perf_info
.
get
(
"succ_rate"
,
""
)
self
.
qps
=
perf_info
.
get
(
"qps"
,
""
)
# conf info
self
.
config_status
=
self
.
parse_config
(
config
)
# mem info
if
isinstance
(
resource_info
,
dict
):
self
.
cpu_rss_mb
=
int
(
resource_info
.
get
(
'cpu_rss_mb'
,
0
))
self
.
cpu_vms_mb
=
int
(
resource_info
.
get
(
'cpu_vms_mb'
,
0
))
self
.
cpu_shared_mb
=
int
(
resource_info
.
get
(
'cpu_shared_mb'
,
0
))
self
.
cpu_dirty_mb
=
int
(
resource_info
.
get
(
'cpu_dirty_mb'
,
0
))
self
.
cpu_util
=
round
(
resource_info
.
get
(
'cpu_util'
,
0
),
2
)
self
.
gpu_rss_mb
=
int
(
resource_info
.
get
(
'gpu_rss_mb'
,
0
))
self
.
gpu_util
=
round
(
resource_info
.
get
(
'gpu_util'
,
0
),
2
)
self
.
gpu_mem_util
=
round
(
resource_info
.
get
(
'gpu_mem_util'
,
0
),
2
)
else
:
self
.
cpu_rss_mb
=
0
self
.
cpu_vms_mb
=
0
self
.
cpu_shared_mb
=
0
self
.
cpu_dirty_mb
=
0
self
.
cpu_util
=
0
self
.
gpu_rss_mb
=
0
self
.
gpu_util
=
0
self
.
gpu_mem_util
=
0
# init benchmark logger
self
.
benchmark_logger
()
def
benchmark_logger
(
self
):
"""
benchmark logger
"""
# remove other logging handler
for
handler
in
logging
.
root
.
handlers
[:]:
logging
.
root
.
removeHandler
(
handler
)
# Init logger
FORMAT
=
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
log_output
=
f
"
{
LOG_PATH_ROOT
}
/
{
self
.
model_name
}
.log"
Path
(
f
"
{
LOG_PATH_ROOT
}
"
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
,
handlers
=
[
logging
.
FileHandler
(
filename
=
log_output
,
mode
=
'w'
),
logging
.
StreamHandler
(),
])
self
.
logger
=
logging
.
getLogger
(
__name__
)
self
.
logger
.
info
(
f
"Paddle Inference benchmark log will be saved to
{
log_output
}
"
)
def
parse_config
(
self
,
config
)
->
dict
:
"""
parse paddle predictor config
args:
config(paddle.inference.Config): paddle inference config
return:
config_status(dict): dict style config info
"""
if
isinstance
(
config
,
paddle_infer
.
Config
):
config_status
=
{}
config_status
[
'runtime_device'
]
=
"gpu"
if
config
.
use_gpu
()
else
"cpu"
config_status
[
'ir_optim'
]
=
config
.
ir_optim
()
config_status
[
'enable_tensorrt'
]
=
config
.
tensorrt_engine_enabled
()
config_status
[
'precision'
]
=
self
.
precision
config_status
[
'enable_mkldnn'
]
=
config
.
mkldnn_enabled
()
config_status
[
'cpu_math_library_num_threads'
]
=
config
.
cpu_math_library_num_threads
()
elif
isinstance
(
config
,
dict
):
config_status
[
'runtime_device'
]
=
config
.
get
(
'runtime_device'
,
""
)
config_status
[
'ir_optim'
]
=
config
.
get
(
'ir_optim'
,
""
)
config_status
[
'enable_tensorrt'
]
=
config
.
get
(
'enable_tensorrt'
,
""
)
config_status
[
'precision'
]
=
config
.
get
(
'precision'
,
""
)
config_status
[
'enable_mkldnn'
]
=
config
.
get
(
'enable_mkldnn'
,
""
)
config_status
[
'cpu_math_library_num_threads'
]
=
config
.
get
(
'cpu_math_library_num_threads'
,
""
)
else
:
self
.
print_help
()
raise
ValueError
(
"Set argument config wrong, please check input argument and its type"
)
return
config_status
def
report
(
self
,
identifier
=
None
):
"""
print log report
args:
identifier(string): identify log
"""
if
identifier
:
identifier
=
f
"[
{
identifier
}
]"
else
:
identifier
=
""
self
.
logger
.
info
(
"
\n
"
)
self
.
logger
.
info
(
"---------------------- Paddle info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_version:
{
self
.
paddle_version
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_commit:
{
self
.
paddle_commit
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_branch:
{
self
.
paddle_branch
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
log_api_version:
{
self
.
log_version
}
"
)
self
.
logger
.
info
(
"----------------------- Conf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
runtime_device:
{
self
.
config_status
[
'runtime_device'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
ir_optim:
{
self
.
config_status
[
'ir_optim'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_memory_optim:
{
True
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_tensorrt:
{
self
.
config_status
[
'enable_tensorrt'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_mkldnn:
{
self
.
config_status
[
'enable_mkldnn'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_math_library_num_threads:
{
self
.
config_status
[
'cpu_math_library_num_threads'
]
}
"
)
self
.
logger
.
info
(
"----------------------- Model info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
model_name:
{
self
.
model_name
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
precision:
{
self
.
precision
}
"
)
self
.
logger
.
info
(
"----------------------- Data info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
batch_size:
{
self
.
batch_size
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
input_shape:
{
self
.
shape
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
data_num:
{
self
.
data_num
}
"
)
self
.
logger
.
info
(
"----------------------- Perf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_rss(MB):
{
self
.
cpu_rss_mb
}
, cpu_vms:
{
self
.
cpu_vms_mb
}
, cpu_shared_mb:
{
self
.
cpu_shared_mb
}
, cpu_dirty_mb:
{
self
.
cpu_dirty_mb
}
, cpu_util:
{
self
.
cpu_util
}
%"
)
self
.
logger
.
info
(
f
"
{
identifier
}
gpu_rss(MB):
{
self
.
gpu_rss_mb
}
, gpu_util:
{
self
.
gpu_util
}
%, gpu_mem_util:
{
self
.
gpu_mem_util
}
%"
)
self
.
logger
.
info
(
f
"
{
identifier
}
total time spent(s):
{
self
.
total_time_s
}
"
)
if
self
.
with_tracker
:
self
.
logger
.
info
(
f
"
{
identifier
}
preprocess_time(ms):
{
round
(
self
.
preprocess_time_s
*
1000
,
1
)
}
, "
f
"inference_time(ms):
{
round
(
self
.
inference_time_s
*
1000
,
1
)
}
, "
f
"postprocess_time(ms):
{
round
(
self
.
postprocess_time_s
*
1000
,
1
)
}
, "
f
"tracking_time(ms):
{
round
(
self
.
tracking_time_s
*
1000
,
1
)
}
"
)
else
:
self
.
logger
.
info
(
f
"
{
identifier
}
preprocess_time(ms):
{
round
(
self
.
preprocess_time_s
*
1000
,
1
)
}
, "
f
"inference_time(ms):
{
round
(
self
.
inference_time_s
*
1000
,
1
)
}
, "
f
"postprocess_time(ms):
{
round
(
self
.
postprocess_time_s
*
1000
,
1
)
}
"
)
if
self
.
inference_time_s_90
:
self
.
looger
.
info
(
f
"
{
identifier
}
90%_cost:
{
self
.
inference_time_s_90
}
, 99%_cost:
{
self
.
inference_time_s_99
}
, succ_rate:
{
self
.
succ_rate
}
"
)
if
self
.
qps
:
self
.
logger
.
info
(
f
"
{
identifier
}
QPS:
{
self
.
qps
}
"
)
def
print_help
(
self
):
"""
print function help
"""
print
(
"""Usage:
==== Print inference benchmark logs. ====
config = paddle.inference.Config()
model_info = {'model_name': 'resnet50'
'precision': 'fp32'}
data_info = {'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info = {'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info = {'cpu_rss_mb': 100
'gpu_rss_mb': 100
'gpu_util': 60}
log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
log('Test')
"""
)
def
__call__
(
self
,
identifier
=
None
):
"""
__call__
args:
identifier(string): identify log
"""
self
.
report
(
identifier
)
modules/image/keypoint_detection/pp-tinypose/det_keypoint_unite_infer.py
浏览文件 @
2957e638
...
@@ -19,18 +19,12 @@ import cv2
...
@@ -19,18 +19,12 @@ import cv2
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
import
yaml
import
yaml
from
benchmark_utils
import
PaddleInferBenchmark
from
det_keypoint_unite_utils
import
argsparser
from
infer
import
bench_log
from
infer
import
Detector
from
infer
import
Detector
from
infer
import
get_test_images
from
infer
import
PredictConfig
from
infer
import
PredictConfig
from
infer
import
print_arguments
from
keypoint_infer
import
KeyPointDetector
from
keypoint_infer
import
KeyPointDetector
from
keypoint_infer
import
PredictConfig_KeyPoint
from
keypoint_infer
import
PredictConfig_KeyPoint
from
keypoint_postprocess
import
translate_to_ori_images
from
keypoint_postprocess
import
translate_to_ori_images
from
preprocess
import
decode_image
from
preprocess
import
decode_image
from
utils
import
get_current_memory_mb
from
visualize
import
visualize_pose
from
visualize
import
visualize_pose
KEYPOINT_SUPPORT_MODELS
=
{
'HigherHRNet'
:
'keypoint_bottomup'
,
'HRNet'
:
'keypoint_topdown'
}
KEYPOINT_SUPPORT_MODELS
=
{
'HigherHRNet'
:
'keypoint_bottomup'
,
'HRNet'
:
'keypoint_topdown'
}
...
@@ -49,182 +43,3 @@ def predict_with_given_det(image, det_res, keypoint_detector, keypoint_batch_siz
...
@@ -49,182 +43,3 @@ def predict_with_given_det(image, det_res, keypoint_detector, keypoint_batch_siz
[]]
[]]
keypoint_res
[
'bbox'
]
=
rect_vector
keypoint_res
[
'bbox'
]
=
rect_vector
return
keypoint_res
return
keypoint_res
def
topdown_unite_predict
(
detector
,
topdown_keypoint_detector
,
image_list
,
keypoint_batch_size
=
1
,
save_res
=
False
):
det_timer
=
detector
.
get_timer
()
store_res
=
[]
for
i
,
img_file
in
enumerate
(
image_list
):
# Decode image in advance in det + pose prediction
det_timer
.
preprocess_time_s
.
start
()
image
,
_
=
decode_image
(
img_file
,
{})
det_timer
.
preprocess_time_s
.
end
()
if
FLAGS
.
run_benchmark
:
results
=
detector
.
predict_image
([
image
],
run_benchmark
=
True
,
repeats
=
10
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
detector
.
gpu_util
+=
gu
else
:
results
=
detector
.
predict_image
([
image
],
visual
=
False
)
results
=
detector
.
filter_box
(
results
,
FLAGS
.
det_threshold
)
if
results
[
'boxes_num'
]
>
0
:
keypoint_res
=
predict_with_given_det
(
image
,
results
,
topdown_keypoint_detector
,
keypoint_batch_size
,
FLAGS
.
run_benchmark
)
if
save_res
:
save_name
=
img_file
if
isinstance
(
img_file
,
str
)
else
i
store_res
.
append
(
[
save_name
,
keypoint_res
[
'bbox'
],
[
keypoint_res
[
'keypoint'
][
0
],
keypoint_res
[
'keypoint'
][
1
]]])
else
:
results
[
"keypoint"
]
=
[[],
[]]
keypoint_res
=
results
if
FLAGS
.
run_benchmark
:
cm
,
gm
,
gu
=
get_current_memory_mb
()
topdown_keypoint_detector
.
cpu_mem
+=
cm
topdown_keypoint_detector
.
gpu_mem
+=
gm
topdown_keypoint_detector
.
gpu_util
+=
gu
else
:
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
visualize_pose
(
img_file
,
keypoint_res
,
visual_thresh
=
FLAGS
.
keypoint_threshold
,
save_dir
=
FLAGS
.
output_dir
)
if
save_res
:
"""
1) store_res: a list of image_data
2) image_data: [imageid, rects, [keypoints, scores]]
3) rects: list of rect [xmin, ymin, xmax, ymax]
4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
5) scores: mean of all joint conf
"""
with
open
(
"det_keypoint_unite_image_results.json"
,
'w'
)
as
wf
:
json
.
dump
(
store_res
,
wf
,
indent
=
4
)
def
topdown_unite_predict_video
(
detector
,
topdown_keypoint_detector
,
camera_id
,
keypoint_batch_size
=
1
,
save_res
=
False
):
video_name
=
'output.mp4'
if
camera_id
!=
-
1
:
capture
=
cv2
.
VideoCapture
(
camera_id
)
else
:
capture
=
cv2
.
VideoCapture
(
FLAGS
.
video_file
)
video_name
=
os
.
path
.
split
(
FLAGS
.
video_file
)[
-
1
]
# Get Video info : resolution, fps, frame count
width
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_WIDTH
))
height
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_HEIGHT
))
fps
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FPS
))
frame_count
=
int
(
capture
.
get
(
cv2
.
CAP_PROP_FRAME_COUNT
))
print
(
"fps: %d, frame_count: %d"
%
(
fps
,
frame_count
))
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
index
=
0
store_res
=
[]
while
(
1
):
ret
,
frame
=
capture
.
read
()
if
not
ret
:
break
index
+=
1
print
(
'detect frame: %d'
%
(
index
))
frame2
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
results
=
detector
.
predict_image
([
frame2
],
visual
=
False
)
results
=
detector
.
filter_box
(
results
,
FLAGS
.
det_threshold
)
if
results
[
'boxes_num'
]
==
0
:
writer
.
write
(
frame
)
continue
keypoint_res
=
predict_with_given_det
(
frame2
,
results
,
topdown_keypoint_detector
,
keypoint_batch_size
,
FLAGS
.
run_benchmark
)
im
=
visualize_pose
(
frame
,
keypoint_res
,
visual_thresh
=
FLAGS
.
keypoint_threshold
,
returnimg
=
True
)
if
save_res
:
store_res
.
append
([
index
,
keypoint_res
[
'bbox'
],
[
keypoint_res
[
'keypoint'
][
0
],
keypoint_res
[
'keypoint'
][
1
]]])
writer
.
write
(
im
)
if
camera_id
!=
-
1
:
cv2
.
imshow
(
'Mask Detection'
,
im
)
if
cv2
.
waitKey
(
1
)
&
0xFF
==
ord
(
'q'
):
break
writer
.
release
()
print
(
'output_video saved to: {}'
.
format
(
out_path
))
if
save_res
:
"""
1) store_res: a list of frame_data
2) frame_data: [frameid, rects, [keypoints, scores]]
3) rects: list of rect [xmin, ymin, xmax, ymax]
4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
5) scores: mean of all joint conf
"""
with
open
(
"det_keypoint_unite_video_results.json"
,
'w'
)
as
wf
:
json
.
dump
(
store_res
,
wf
,
indent
=
4
)
def
main
():
deploy_file
=
os
.
path
.
join
(
FLAGS
.
det_model_dir
,
'infer_cfg.yml'
)
with
open
(
deploy_file
)
as
f
:
yml_conf
=
yaml
.
safe_load
(
f
)
arch
=
yml_conf
[
'arch'
]
detector
=
Detector
(
FLAGS
.
det_model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
threshold
=
FLAGS
.
det_threshold
)
topdown_keypoint_detector
=
KeyPointDetector
(
FLAGS
.
keypoint_model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
batch_size
=
FLAGS
.
keypoint_batch_size
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
use_dark
=
FLAGS
.
use_dark
)
keypoint_arch
=
topdown_keypoint_detector
.
pred_config
.
arch
assert
KEYPOINT_SUPPORT_MODELS
[
keypoint_arch
]
==
'keypoint_topdown'
,
'Detection-Keypoint unite inference only supports topdown models.'
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
topdown_unite_predict_video
(
detector
,
topdown_keypoint_detector
,
FLAGS
.
camera_id
,
FLAGS
.
keypoint_batch_size
,
FLAGS
.
save_res
)
else
:
# predict from image
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
topdown_unite_predict
(
detector
,
topdown_keypoint_detector
,
img_list
,
FLAGS
.
keypoint_batch_size
,
FLAGS
.
save_res
)
if
not
FLAGS
.
run_benchmark
:
detector
.
det_times
.
info
(
average
=
True
)
topdown_keypoint_detector
.
det_times
.
info
(
average
=
True
)
else
:
mode
=
FLAGS
.
run_mode
det_model_dir
=
FLAGS
.
det_model_dir
det_model_info
=
{
'model_name'
:
det_model_dir
.
strip
(
'/'
).
split
(
'/'
)[
-
1
],
'precision'
:
mode
.
split
(
'_'
)[
-
1
]}
bench_log
(
detector
,
img_list
,
det_model_info
,
name
=
'Det'
)
keypoint_model_dir
=
FLAGS
.
keypoint_model_dir
keypoint_model_info
=
{
'model_name'
:
keypoint_model_dir
.
strip
(
'/'
).
split
(
'/'
)[
-
1
],
'precision'
:
mode
.
split
(
'_'
)[
-
1
]
}
bench_log
(
topdown_keypoint_detector
,
img_list
,
keypoint_model_info
,
FLAGS
.
keypoint_batch_size
,
'KeyPoint'
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
FLAGS
.
device
=
FLAGS
.
device
.
upper
()
assert
FLAGS
.
device
in
[
'CPU'
,
'GPU'
,
'XPU'
],
"device should be CPU, GPU or XPU"
main
()
modules/image/keypoint_detection/pp-tinypose/det_keypoint_unite_utils.py
已删除
100644 → 0
浏览文件 @
35da85b7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
ast
def
argsparser
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--det_model_dir"
,
type
=
str
,
default
=
None
,
help
=
(
"Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."
),
required
=
True
)
parser
.
add_argument
(
"--keypoint_model_dir"
,
type
=
str
,
default
=
None
,
help
=
(
"Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."
),
required
=
True
)
parser
.
add_argument
(
"--image_file"
,
type
=
str
,
default
=
None
,
help
=
"Path of image file."
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
,
default
=
None
,
help
=
"Dir of image file, `image_file` has a higher priority."
)
parser
.
add_argument
(
"--keypoint_batch_size"
,
type
=
int
,
default
=
8
,
help
=
(
"batch_size for keypoint inference. In detection-keypoint unit"
"inference, the batch size in detection is 1. Then collate det "
"result in batch for keypoint inference."
))
parser
.
add_argument
(
"--video_file"
,
type
=
str
,
default
=
None
,
help
=
"Path of video file, `video_file` or `camera_id` has a highest priority."
)
parser
.
add_argument
(
"--camera_id"
,
type
=
int
,
default
=-
1
,
help
=
"device id of camera to predict."
)
parser
.
add_argument
(
"--det_threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold of score."
)
parser
.
add_argument
(
"--keypoint_threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold of score."
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory of output visualization files."
)
parser
.
add_argument
(
"--run_mode"
,
type
=
str
,
default
=
'paddle'
,
help
=
"mode of running(paddle/trt_fp32/trt_fp16/trt_int8)"
)
parser
.
add_argument
(
"--device"
,
type
=
str
,
default
=
'cpu'
,
help
=
"Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
)
parser
.
add_argument
(
"--run_benchmark"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether to predict a image_file repeatedly for benchmark"
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use mkldnn with CPU."
)
parser
.
add_argument
(
"--cpu_threads"
,
type
=
int
,
default
=
1
,
help
=
"Num of threads with CPU."
)
parser
.
add_argument
(
"--trt_min_shape"
,
type
=
int
,
default
=
1
,
help
=
"min_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_max_shape"
,
type
=
int
,
default
=
1280
,
help
=
"max_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_opt_shape"
,
type
=
int
,
default
=
640
,
help
=
"opt_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_calib_mode"
,
type
=
bool
,
default
=
False
,
help
=
"If the model is produced by TRT offline quantitative "
"calibration, trt_calib_mode need to set True."
)
parser
.
add_argument
(
'--use_dark'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'whether to use darkpose to get better keypoint position predict '
)
parser
.
add_argument
(
'--save_res'
,
type
=
bool
,
default
=
False
,
help
=
(
"whether to save predict results to json file"
"1) store_res: a list of image_data"
"2) image_data: [imageid, rects, [keypoints, scores]]"
"3) rects: list of rect [xmin, ymin, xmax, ymax]"
"4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list"
"5) scores: mean of all joint conf"
))
return
parser
modules/image/keypoint_detection/pp-tinypose/infer.py
浏览文件 @
2957e638
...
@@ -23,7 +23,6 @@ import cv2
...
@@ -23,7 +23,6 @@ import cv2
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
import
yaml
import
yaml
from
benchmark_utils
import
PaddleInferBenchmark
from
keypoint_preprocess
import
EvalAffine
from
keypoint_preprocess
import
EvalAffine
from
keypoint_preprocess
import
expand_crop
from
keypoint_preprocess
import
expand_crop
from
keypoint_preprocess
import
TopDownEvalAffine
from
keypoint_preprocess
import
TopDownEvalAffine
...
@@ -38,9 +37,6 @@ from preprocess import Permute
...
@@ -38,9 +37,6 @@ from preprocess import Permute
from
preprocess
import
preprocess
from
preprocess
import
preprocess
from
preprocess
import
Resize
from
preprocess
import
Resize
from
preprocess
import
WarpAffine
from
preprocess
import
WarpAffine
from
utils
import
argsparser
from
utils
import
get_current_memory_mb
from
utils
import
Timer
from
visualize
import
visualize_box
from
visualize
import
visualize_box
# Global dictionary
# Global dictionary
...
@@ -67,18 +63,6 @@ SUPPORT_MODELS = {
...
@@ -67,18 +63,6 @@ SUPPORT_MODELS = {
}
}
def
bench_log
(
detector
,
img_list
,
model_info
,
batch_size
=
1
,
name
=
None
):
mems
=
{
'cpu_rss_mb'
:
detector
.
cpu_mem
/
len
(
img_list
),
'gpu_rss_mb'
:
detector
.
gpu_mem
/
len
(
img_list
),
'gpu_util'
:
detector
.
gpu_util
*
100
/
len
(
img_list
)
}
perf_info
=
detector
.
det_times
.
report
(
average
=
True
)
data_info
=
{
'batch_size'
:
batch_size
,
'shape'
:
"dynamic_shape"
,
'data_num'
:
perf_info
[
'img_num'
]}
log
=
PaddleInferBenchmark
(
detector
.
config
,
model_info
,
data_info
,
perf_info
,
mems
)
log
(
name
)
class
Detector
(
object
):
class
Detector
(
object
):
"""
"""
Args:
Args:
...
@@ -132,7 +116,6 @@ class Detector(object):
...
@@ -132,7 +116,6 @@ class Detector(object):
enable_mkldnn
=
enable_mkldnn
,
enable_mkldnn
=
enable_mkldnn
,
enable_mkldnn_bfloat16
=
enable_mkldnn_bfloat16
,
enable_mkldnn_bfloat16
=
enable_mkldnn_bfloat16
,
delete_shuffle_pass
=
delete_shuffle_pass
)
delete_shuffle_pass
=
delete_shuffle_pass
)
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
self
.
batch_size
=
batch_size
self
.
batch_size
=
batch_size
self
.
output_dir
=
output_dir
self
.
output_dir
=
output_dir
...
@@ -228,9 +211,6 @@ class Detector(object):
...
@@ -228,9 +211,6 @@ class Detector(object):
results
[
k
]
=
np
.
concatenate
(
v
)
results
[
k
]
=
np
.
concatenate
(
v
)
return
results
return
results
def
get_timer
(
self
):
return
self
.
det_times
def
predict_image
(
self
,
image_list
,
run_benchmark
=
False
,
repeats
=
1
,
visual
=
True
,
save_file
=
None
):
def
predict_image
(
self
,
image_list
,
run_benchmark
=
False
,
repeats
=
1
,
visual
=
True
,
save_file
=
None
):
batch_loop_cnt
=
math
.
ceil
(
float
(
len
(
image_list
))
/
self
.
batch_size
)
batch_loop_cnt
=
math
.
ceil
(
float
(
len
(
image_list
))
/
self
.
batch_size
)
results
=
[]
results
=
[]
...
@@ -238,31 +218,6 @@ class Detector(object):
...
@@ -238,31 +218,6 @@ class Detector(object):
start_index
=
i
*
self
.
batch_size
start_index
=
i
*
self
.
batch_size
end_index
=
min
((
i
+
1
)
*
self
.
batch_size
,
len
(
image_list
))
end_index
=
min
((
i
+
1
)
*
self
.
batch_size
,
len
(
image_list
))
batch_image_list
=
image_list
[
start_index
:
end_index
]
batch_image_list
=
image_list
[
start_index
:
end_index
]
if
run_benchmark
:
# preprocess
inputs
=
self
.
preprocess
(
batch_image_list
)
# warmup
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
batch_image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
# model prediction
result
=
self
.
predict
(
repeats
=
50
)
# warmup
self
.
det_times
.
inference_time_s
.
start
()
result
=
self
.
predict
(
repeats
=
repeats
)
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
# postprocess
result_warmup
=
self
.
postprocess
(
inputs
,
result
)
# warmup
self
.
det_times
.
postprocess_time_s
.
start
()
result
=
self
.
postprocess
(
inputs
,
result
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
batch_image_list
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
self
.
cpu_mem
+=
cm
self
.
gpu_mem
+=
gm
self
.
gpu_util
+=
gu
else
:
# preprocess
# preprocess
self
.
det_times
.
preprocess_time_s
.
start
()
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
batch_image_list
)
inputs
=
self
.
preprocess
(
batch_image_list
)
...
@@ -626,69 +581,3 @@ def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
...
@@ -626,69 +581,3 @@ def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
out_path
=
os
.
path
.
join
(
output_dir
,
img_name
)
out_path
=
os
.
path
.
join
(
output_dir
,
img_name
)
im
.
save
(
out_path
,
quality
=
95
)
im
.
save
(
out_path
,
quality
=
95
)
print
(
"save result to: "
+
out_path
)
print
(
"save result to: "
+
out_path
)
def
print_arguments
(
args
):
print
(
'----------- Running Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
items
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------'
)
def
main
():
deploy_file
=
os
.
path
.
join
(
FLAGS
.
model_dir
,
'infer_cfg.yml'
)
with
open
(
deploy_file
)
as
f
:
yml_conf
=
yaml
.
safe_load
(
f
)
arch
=
yml_conf
[
'arch'
]
detector_func
=
'Detector'
if
arch
==
'SOLOv2'
:
detector_func
=
'DetectorSOLOv2'
elif
arch
==
'PicoDet'
:
detector_func
=
'DetectorPicoDet'
detector
=
eval
(
detector_func
)(
FLAGS
.
model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
batch_size
=
FLAGS
.
batch_size
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
enable_mkldnn_bfloat16
=
FLAGS
.
enable_mkldnn_bfloat16
,
threshold
=
FLAGS
.
threshold
,
output_dir
=
FLAGS
.
output_dir
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
detector
.
predict_video
(
FLAGS
.
video_file
,
FLAGS
.
camera_id
)
else
:
# predict from image
if
FLAGS
.
image_dir
is
None
and
FLAGS
.
image_file
is
not
None
:
assert
FLAGS
.
batch_size
==
1
,
"batch_size should be 1, when image_file is not None"
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
save_file
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
'results.json'
)
if
FLAGS
.
save_results
else
None
detector
.
predict_image
(
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
100
,
save_file
=
save_file
)
if
not
FLAGS
.
run_benchmark
:
detector
.
det_times
.
info
(
average
=
True
)
else
:
mode
=
FLAGS
.
run_mode
model_dir
=
FLAGS
.
model_dir
model_info
=
{
'model_name'
:
model_dir
.
strip
(
'/'
).
split
(
'/'
)[
-
1
],
'precision'
:
mode
.
split
(
'_'
)[
-
1
]}
bench_log
(
detector
,
img_list
,
model_info
,
name
=
'DET'
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
FLAGS
.
device
=
FLAGS
.
device
.
upper
()
assert
FLAGS
.
device
in
[
'CPU'
,
'GPU'
,
'XPU'
],
"device should be CPU, GPU or XPU"
assert
not
FLAGS
.
use_gpu
,
"use_gpu has been deprecated, please use --device"
assert
not
(
FLAGS
.
enable_mkldnn
==
False
and
FLAGS
.
enable_mkldnn_bfloat16
==
True
),
'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
main
()
modules/image/keypoint_detection/pp-tinypose/keypoint_infer.py
浏览文件 @
2957e638
...
@@ -33,9 +33,7 @@ from keypoint_postprocess import HRNetPostProcess
...
@@ -33,9 +33,7 @@ from keypoint_postprocess import HRNetPostProcess
from
visualize
import
visualize_pose
from
visualize
import
visualize_pose
from
paddle.inference
import
Config
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
from
paddle.inference
import
create_predictor
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
from
infer
import
Detector
from
benchmark_utils
import
PaddleInferBenchmark
from
infer
import
Detector
,
get_test_images
,
print_arguments
# Global dictionary
# Global dictionary
KEYPOINT_SUPPORT_MODELS
=
{
'HigherHRNet'
:
'keypoint_bottomup'
,
'HRNet'
:
'keypoint_topdown'
}
KEYPOINT_SUPPORT_MODELS
=
{
'HigherHRNet'
:
'keypoint_bottomup'
,
'HRNet'
:
'keypoint_topdown'
}
...
@@ -169,32 +167,6 @@ class KeyPointDetector(Detector):
...
@@ -169,32 +167,6 @@ class KeyPointDetector(Detector):
start_index
=
i
*
self
.
batch_size
start_index
=
i
*
self
.
batch_size
end_index
=
min
((
i
+
1
)
*
self
.
batch_size
,
len
(
image_list
))
end_index
=
min
((
i
+
1
)
*
self
.
batch_size
,
len
(
image_list
))
batch_image_list
=
image_list
[
start_index
:
end_index
]
batch_image_list
=
image_list
[
start_index
:
end_index
]
if
run_benchmark
:
# preprocess
inputs
=
self
.
preprocess
(
batch_image_list
)
# warmup
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
batch_image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
# model prediction
result_warmup
=
self
.
predict
(
repeats
=
repeats
)
# warmup
self
.
det_times
.
inference_time_s
.
start
()
result
=
self
.
predict
(
repeats
=
repeats
)
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
# postprocess
result_warmup
=
self
.
postprocess
(
inputs
,
result
)
# warmup
self
.
det_times
.
postprocess_time_s
.
start
()
result
=
self
.
postprocess
(
inputs
,
result
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
batch_image_list
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
self
.
cpu_mem
+=
cm
self
.
gpu_mem
+=
gm
self
.
gpu_util
+=
gu
else
:
# preprocess
# preprocess
self
.
det_times
.
preprocess_time_s
.
start
()
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
batch_image_list
)
inputs
=
self
.
preprocess
(
batch_image_list
)
...
@@ -328,54 +300,3 @@ def visualize(image_list, results, visual_thresh=0.6, save_dir='output'):
...
@@ -328,54 +300,3 @@ def visualize(image_list, results, visual_thresh=0.6, save_dir='output'):
score
=
scores
[
i
:
i
+
1
]
score
=
scores
[
i
:
i
+
1
]
im_results
[
'keypoint'
]
=
[
skeleton
,
score
]
im_results
[
'keypoint'
]
=
[
skeleton
,
score
]
visualize_pose
(
image_file
,
im_results
,
visual_thresh
=
visual_thresh
,
save_dir
=
save_dir
)
visualize_pose
(
image_file
,
im_results
,
visual_thresh
=
visual_thresh
,
save_dir
=
save_dir
)
def
main
():
detector
=
KeyPointDetector
(
FLAGS
.
model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
batch_size
=
FLAGS
.
batch_size
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
threshold
=
FLAGS
.
threshold
,
output_dir
=
FLAGS
.
output_dir
,
use_dark
=
FLAGS
.
use_dark
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
detector
.
predict_video
(
FLAGS
.
video_file
,
FLAGS
.
camera_id
)
else
:
# predict from image
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
detector
.
predict_image
(
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
10
)
if
not
FLAGS
.
run_benchmark
:
detector
.
det_times
.
info
(
average
=
True
)
else
:
mems
=
{
'cpu_rss_mb'
:
detector
.
cpu_mem
/
len
(
img_list
),
'gpu_rss_mb'
:
detector
.
gpu_mem
/
len
(
img_list
),
'gpu_util'
:
detector
.
gpu_util
*
100
/
len
(
img_list
)
}
perf_info
=
detector
.
det_times
.
report
(
average
=
True
)
model_dir
=
FLAGS
.
model_dir
mode
=
FLAGS
.
run_mode
model_info
=
{
'model_name'
:
model_dir
.
strip
(
'/'
).
split
(
'/'
)[
-
1
],
'precision'
:
mode
.
split
(
'_'
)[
-
1
]}
data_info
=
{
'batch_size'
:
1
,
'shape'
:
"dynamic_shape"
,
'data_num'
:
perf_info
[
'img_num'
]}
det_log
=
PaddleInferBenchmark
(
detector
.
config
,
model_info
,
data_info
,
perf_info
,
mems
)
det_log
(
'KeyPoint'
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
FLAGS
.
device
=
FLAGS
.
device
.
upper
()
assert
FLAGS
.
device
in
[
'CPU'
,
'GPU'
,
'XPU'
],
"device should be CPU, GPU or XPU"
assert
not
FLAGS
.
use_gpu
,
"use_gpu has been deprecated, please use --device"
main
()
modules/image/keypoint_detection/pp-tinypose/logger.py
已删除
100644 → 0
浏览文件 @
35da85b7
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
functools
import
logging
import
os
import
sys
import
paddle.distributed
as
dist
__all__
=
[
'setup_logger'
]
logger_initialized
=
[]
def
setup_logger
(
name
=
"ppdet"
,
output
=
None
):
"""
Initialize logger and set its verbosity level to INFO.
Args:
output (str): a file name or a directory to save log. If None, will not save log file.
If ends with ".txt" or ".log", assumed to be a file name.
Otherwise, logs will be saved to `output/log.txt`.
name (str): the root module name of this logger
Returns:
logging.Logger: a logger
"""
logger
=
logging
.
getLogger
(
name
)
if
name
in
logger_initialized
:
return
logger
logger
.
setLevel
(
logging
.
INFO
)
logger
.
propagate
=
False
formatter
=
logging
.
Formatter
(
"[%(asctime)s] %(name)s %(levelname)s: %(message)s"
,
datefmt
=
"%m/%d %H:%M:%S"
)
# stdout logging: master only
local_rank
=
dist
.
get_rank
()
if
local_rank
==
0
:
ch
=
logging
.
StreamHandler
(
stream
=
sys
.
stdout
)
ch
.
setLevel
(
logging
.
DEBUG
)
ch
.
setFormatter
(
formatter
)
logger
.
addHandler
(
ch
)
# file logging: all workers
if
output
is
not
None
:
if
output
.
endswith
(
".txt"
)
or
output
.
endswith
(
".log"
):
filename
=
output
else
:
filename
=
os
.
path
.
join
(
output
,
"log.txt"
)
if
local_rank
>
0
:
filename
=
filename
+
".rank{}"
.
format
(
local_rank
)
os
.
makedirs
(
os
.
path
.
dirname
(
filename
))
fh
=
logging
.
FileHandler
(
filename
,
mode
=
'a'
)
fh
.
setLevel
(
logging
.
DEBUG
)
fh
.
setFormatter
(
logging
.
Formatter
())
logger
.
addHandler
(
fh
)
logger_initialized
.
append
(
name
)
return
logger
modules/image/keypoint_detection/pp-tinypose/module.py
浏览文件 @
2957e638
...
@@ -23,19 +23,12 @@ import numpy as np
...
@@ -23,19 +23,12 @@ import numpy as np
import
paddle
import
paddle
import
yaml
import
yaml
from
det_keypoint_unite_infer
import
predict_with_given_det
from
det_keypoint_unite_infer
import
predict_with_given_det
from
infer
import
bench_log
from
infer
import
Detector
from
infer
import
Detector
from
infer
import
get_test_images
from
infer
import
PredictConfig
from
infer
import
print_arguments
from
keypoint_infer
import
KeyPointDetector
from
keypoint_infer
import
KeyPointDetector
from
keypoint_infer
import
PredictConfig_KeyPoint
from
keypoint_postprocess
import
translate_to_ori_images
from
preprocess
import
base64_to_cv2
from
preprocess
import
base64_to_cv2
from
preprocess
import
decode_image
from
preprocess
import
decode_image
from
visualize
import
visualize_pose
from
visualize
import
visualize_pose
import
paddlehub.vision.transforms
as
T
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
serving
from
paddlehub.module.module
import
serving
...
...
modules/image/keypoint_detection/pp-tinypose/utils.py
已删除
100644 → 0
浏览文件 @
35da85b7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
ast
import
os
import
time
def
argsparser
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--model_dir"
,
type
=
str
,
default
=
None
,
help
=
(
"Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."
),
required
=
True
)
parser
.
add_argument
(
"--image_file"
,
type
=
str
,
default
=
None
,
help
=
"Path of image file."
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
,
default
=
None
,
help
=
"Dir of image file, `image_file` has a higher priority."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
1
,
help
=
"batch_size for inference."
)
parser
.
add_argument
(
"--video_file"
,
type
=
str
,
default
=
None
,
help
=
"Path of video file, `video_file` or `camera_id` has a highest priority."
)
parser
.
add_argument
(
"--camera_id"
,
type
=
int
,
default
=-
1
,
help
=
"device id of camera to predict."
)
parser
.
add_argument
(
"--threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold of score."
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory of output visualization files."
)
parser
.
add_argument
(
"--run_mode"
,
type
=
str
,
default
=
'paddle'
,
help
=
"mode of running(paddle/trt_fp32/trt_fp16/trt_int8)"
)
parser
.
add_argument
(
"--device"
,
type
=
str
,
default
=
'cpu'
,
help
=
"Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Deprecated, please use `--device`."
)
parser
.
add_argument
(
"--run_benchmark"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether to predict a image_file repeatedly for benchmark"
)
parser
.
add_argument
(
"--enable_mkldnn"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use mkldnn with CPU."
)
parser
.
add_argument
(
"--enable_mkldnn_bfloat16"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether use mkldnn bfloat16 inference with CPU."
)
parser
.
add_argument
(
"--cpu_threads"
,
type
=
int
,
default
=
1
,
help
=
"Num of threads with CPU."
)
parser
.
add_argument
(
"--trt_min_shape"
,
type
=
int
,
default
=
1
,
help
=
"min_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_max_shape"
,
type
=
int
,
default
=
1280
,
help
=
"max_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_opt_shape"
,
type
=
int
,
default
=
640
,
help
=
"opt_shape for TensorRT."
)
parser
.
add_argument
(
"--trt_calib_mode"
,
type
=
bool
,
default
=
False
,
help
=
"If the model is produced by TRT offline quantitative "
"calibration, trt_calib_mode need to set True."
)
parser
.
add_argument
(
'--save_images'
,
action
=
'store_true'
,
help
=
'Save visualization image results.'
)
parser
.
add_argument
(
'--save_mot_txts'
,
action
=
'store_true'
,
help
=
'Save tracking results (txt).'
)
parser
.
add_argument
(
'--save_mot_txt_per_img'
,
action
=
'store_true'
,
help
=
'Save tracking results (txt) for each image.'
)
parser
.
add_argument
(
'--scaled'
,
type
=
bool
,
default
=
False
,
help
=
"Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
"True in general detector."
)
parser
.
add_argument
(
"--tracker_config"
,
type
=
str
,
default
=
None
,
help
=
(
"tracker donfig"
))
parser
.
add_argument
(
"--reid_model_dir"
,
type
=
str
,
default
=
None
,
help
=
(
"Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."
))
parser
.
add_argument
(
"--reid_batch_size"
,
type
=
int
,
default
=
50
,
help
=
"max batch_size for reid model inference."
)
parser
.
add_argument
(
'--use_dark'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'whether to use darkpose to get better keypoint position predict '
)
parser
.
add_argument
(
"--action_file"
,
type
=
str
,
default
=
None
,
help
=
"Path of input file for action recognition."
)
parser
.
add_argument
(
"--window_size"
,
type
=
int
,
default
=
50
,
help
=
"Temporal size of skeleton feature for action recognition."
)
parser
.
add_argument
(
"--random_pad"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether do random padding for action recognition."
)
parser
.
add_argument
(
"--save_results"
,
type
=
bool
,
default
=
False
,
help
=
"Whether save detection result to file using coco format"
)
return
parser
class
Times
(
object
):
def
__init__
(
self
):
self
.
time
=
0.
# start time
self
.
st
=
0.
# end time
self
.
et
=
0.
def
start
(
self
):
self
.
st
=
time
.
time
()
def
end
(
self
,
repeats
=
1
,
accumulative
=
True
):
self
.
et
=
time
.
time
()
if
accumulative
:
self
.
time
+=
(
self
.
et
-
self
.
st
)
/
repeats
else
:
self
.
time
=
(
self
.
et
-
self
.
st
)
/
repeats
def
reset
(
self
):
self
.
time
=
0.
self
.
st
=
0.
self
.
et
=
0.
def
value
(
self
):
return
round
(
self
.
time
,
4
)
class
Timer
(
Times
):
def
__init__
(
self
,
with_tracker
=
False
):
super
(
Timer
,
self
).
__init__
()
self
.
with_tracker
=
with_tracker
self
.
preprocess_time_s
=
Times
()
self
.
inference_time_s
=
Times
()
self
.
postprocess_time_s
=
Times
()
self
.
tracking_time_s
=
Times
()
self
.
img_num
=
0
def
info
(
self
,
average
=
False
):
pre_time
=
self
.
preprocess_time_s
.
value
()
infer_time
=
self
.
inference_time_s
.
value
()
post_time
=
self
.
postprocess_time_s
.
value
()
track_time
=
self
.
tracking_time_s
.
value
()
total_time
=
pre_time
+
infer_time
+
post_time
if
self
.
with_tracker
:
total_time
=
total_time
+
track_time
total_time
=
round
(
total_time
,
4
)
print
(
"------------------ Inference Time Info ----------------------"
)
print
(
"total_time(ms): {}, img_num: {}"
.
format
(
total_time
*
1000
,
self
.
img_num
))
preprocess_time
=
round
(
pre_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
pre_time
postprocess_time
=
round
(
post_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
post_time
inference_time
=
round
(
infer_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
infer_time
tracking_time
=
round
(
track_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
track_time
average_latency
=
total_time
/
max
(
1
,
self
.
img_num
)
qps
=
0
if
total_time
>
0
:
qps
=
1
/
average_latency
print
(
"average latency time(ms): {:.2f}, QPS: {:2f}"
.
format
(
average_latency
*
1000
,
qps
))
if
self
.
with_tracker
:
print
(
"preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}"
.
format
(
preprocess_time
*
1000
,
inference_time
*
1000
,
postprocess_time
*
1000
,
tracking_time
*
1000
))
else
:
print
(
"preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}"
.
format
(
preprocess_time
*
1000
,
inference_time
*
1000
,
postprocess_time
*
1000
))
def
report
(
self
,
average
=
False
):
dic
=
{}
pre_time
=
self
.
preprocess_time_s
.
value
()
infer_time
=
self
.
inference_time_s
.
value
()
post_time
=
self
.
postprocess_time_s
.
value
()
track_time
=
self
.
tracking_time_s
.
value
()
dic
[
'preprocess_time_s'
]
=
round
(
pre_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
pre_time
dic
[
'inference_time_s'
]
=
round
(
infer_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
infer_time
dic
[
'postprocess_time_s'
]
=
round
(
post_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
post_time
dic
[
'img_num'
]
=
self
.
img_num
total_time
=
pre_time
+
infer_time
+
post_time
if
self
.
with_tracker
:
dic
[
'tracking_time_s'
]
=
round
(
track_time
/
max
(
1
,
self
.
img_num
),
4
)
if
average
else
track_time
total_time
=
total_time
+
track_time
dic
[
'total_time_s'
]
=
round
(
total_time
,
4
)
return
dic
def
get_current_memory_mb
():
"""
It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
And this function Current program is time-consuming.
"""
import
pynvml
import
psutil
import
GPUtil
gpu_id
=
int
(
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
,
0
))
pid
=
os
.
getpid
()
p
=
psutil
.
Process
(
pid
)
info
=
p
.
memory_full_info
()
cpu_mem
=
info
.
uss
/
1024.
/
1024.
gpu_mem
=
0
gpu_percent
=
0
gpus
=
GPUtil
.
getGPUs
()
if
gpu_id
is
not
None
and
len
(
gpus
)
>
0
:
gpu_percent
=
gpus
[
gpu_id
].
load
pynvml
.
nvmlInit
()
handle
=
pynvml
.
nvmlDeviceGetHandleByIndex
(
0
)
meminfo
=
pynvml
.
nvmlDeviceGetMemoryInfo
(
handle
)
gpu_mem
=
meminfo
.
used
/
1024.
/
1024.
return
round
(
cpu_mem
,
4
),
round
(
gpu_mem
,
4
),
round
(
gpu_percent
,
4
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录