Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
2620edc3
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2620edc3
编写于
5月 21, 2019
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactoring the task class
上级
5ee30a94
变更
8
展开全部
显示空白变更内容
内联
并排
Showing
8 changed file
with
593 addition
and
628 deletion
+593
-628
demo/image-classification/img_classifier.py
demo/image-classification/img_classifier.py
+9
-6
demo/image-classification/predict.py
demo/image-classification/predict.py
+29
-28
paddlehub/__init__.py
paddlehub/__init__.py
+4
-5
paddlehub/finetune/checkpoint.py
paddlehub/finetune/checkpoint.py
+15
-5
paddlehub/finetune/evaluate.py
paddlehub/finetune/evaluate.py
+0
-89
paddlehub/finetune/finetune.py
paddlehub/finetune/finetune.py
+0
-312
paddlehub/finetune/strategy.py
paddlehub/finetune/strategy.py
+5
-4
paddlehub/finetune/task.py
paddlehub/finetune/task.py
+531
-179
未找到文件。
demo/image-classification/img_classifier.py
浏览文件 @
2620edc3
...
...
@@ -8,7 +8,7 @@ import numpy as np
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
1
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
default
=
Fals
e
,
help
=
"Whether use GPU for fine-tuning."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
default
=
Tru
e
,
help
=
"Whether use GPU for fine-tuning."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
"paddlehub_finetune_ckpt"
,
help
=
"Path to save log data."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
16
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--module"
,
type
=
str
,
default
=
"resnet50"
,
help
=
"Module used as feature extractor."
)
...
...
@@ -50,11 +50,9 @@ def finetune(args):
dataset
=
dataset
)
feature_map
=
output_dict
[
"feature_map"
]
task
=
hub
.
create_img_cls_task
(
feature
=
feature_map
,
num_classes
=
dataset
.
num_labels
)
img
=
input_dict
[
"image"
]
feed_list
=
[
img
.
name
,
task
.
variable
(
'label'
).
name
]
feed_list
=
[
img
.
name
]
config
=
hub
.
RunConfig
(
use_cuda
=
args
.
use_gpu
,
...
...
@@ -64,8 +62,13 @@ def finetune(args):
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
hub
.
finetune
.
strategy
.
DefaultFinetuneStrategy
())
hub
.
finetune_and_eval
(
task
,
feed_list
=
feed_list
,
data_reader
=
data_reader
,
config
=
config
)
task
=
hub
.
ImageClassifierTask
(
data_reader
=
data_reader
,
feed_list
=
feed_list
,
feature
=
feature_map
,
num_classes
=
dataset
.
num_labels
,
config
=
config
)
task
.
finetune_and_eval
()
if
__name__
==
"__main__"
:
...
...
demo/image-classification/predict.py
浏览文件 @
2620edc3
...
...
@@ -9,6 +9,7 @@ import numpy as np
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
default
=
False
,
help
=
"Whether use GPU for predict."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
"paddlehub_finetune_ckpt"
,
help
=
"Path to save log data."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
16
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--module"
,
type
=
str
,
default
=
"resnet50"
,
help
=
"Module used as a feature extractor."
)
parser
.
add_argument
(
"--dataset"
,
type
=
str
,
default
=
"flowers"
,
help
=
"Dataset to finetune."
)
# yapf: enable.
...
...
@@ -24,6 +25,8 @@ module_map = {
def
predict
(
args
):
module
=
hub
.
Module
(
name
=
args
.
module
)
input_dict
,
output_dict
,
program
=
module
.
context
(
trainable
=
True
)
if
args
.
dataset
.
lower
()
==
"flowers"
:
dataset
=
hub
.
dataset
.
Flowers
()
...
...
@@ -38,45 +41,43 @@ def predict(args):
else
:
raise
ValueError
(
"%s dataset is not defined"
%
args
.
dataset
)
label_map
=
dataset
.
label_dict
()
num_labels
=
len
(
label_map
)
module
=
hub
.
Module
(
name
=
args
.
module
)
input_dict
,
output_dict
,
program
=
module
.
context
()
data_reader
=
hub
.
reader
.
ImageClassificationReader
(
image_width
=
module
.
get_expected_image_width
(),
image_height
=
module
.
get_expected_image_height
(),
images_mean
=
module
.
get_pretrained_images_mean
(),
images_std
=
module
.
get_pretrained_images_std
(),
dataset
=
None
)
dataset
=
dataset
)
img
=
input_dict
[
"image"
]
feature_map
=
output_dict
[
"feature_map"
]
task
=
hub
.
create_img_cls_task
(
feature
=
feature_map
,
num_classes
=
num_labels
)
img
=
input_dict
[
"image"
]
feed_list
=
[
img
.
name
]
with
fluid
.
program_guard
(
task
.
inference_program
()):
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
pretrained_model_dir
=
os
.
path
.
join
(
args
.
checkpoint_dir
,
"best_model"
)
if
not
os
.
path
.
exists
(
pretrained_model_dir
):
hub
.
logger
.
error
(
"pretrained model dir %s didn't exist"
%
pretrained_model_dir
)
exit
(
1
)
fluid
.
io
.
load_persistables
(
exe
,
pretrained_model_dir
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
data
=
[
"test/test_img_roses.jpg"
,
"test/test_img_daisy.jpg"
]
config
=
hub
.
RunConfig
(
use_cuda
=
args
.
use_gpu
,
batch_size
=
args
.
batch_size
,
enable_memory_optim
=
False
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
hub
.
finetune
.
strategy
.
DefaultFinetuneStrategy
())
predict_reader
=
data_reader
.
data_generator
(
phase
=
"predict"
,
batch_size
=
1
,
data
=
data
)
for
index
,
batch
in
enumerate
(
predict_reader
()):
result
,
=
exe
.
run
(
feed
=
feeder
.
feed
(
batch
),
fetch_list
=
[
task
.
variable
(
'probs'
)])
predict_result
=
label_map
[
np
.
argsort
(
result
[
0
])[::
-
1
][
0
]]
task
=
hub
.
ClassifierTask
(
data_reader
=
data_reader
,
feed_list
=
feed_list
,
feature
=
feature_map
,
num_classes
=
dataset
.
num_labels
,
config
=
config
)
data
=
[
"./test/test_img_daisy.jpg"
,
"./test/test_img_roses.jpg"
]
label_map
=
dataset
.
label_dict
()
for
result
in
task
.
predict
(
data
=
data
):
result
=
np
.
argmax
(
result
,
axis
=
2
)
index
=
0
for
batch
in
result
:
for
predict_result
in
batch
:
index
+=
1
predict_result
=
label_map
[
predict_result
]
print
(
"input %i is %s, and the predict result is %s"
%
(
index
,
data
[
index
],
predict_result
))
(
index
,
data
[
index
-
1
],
predict_result
))
if
__name__
==
"__main__"
:
...
...
paddlehub/__init__.py
浏览文件 @
2620edc3
...
...
@@ -38,11 +38,10 @@ from .module.manager import default_module_manager
from
.io.type
import
DataType
from
.finetune.task
import
Task
from
.finetune.task
import
create_seq_label_task
from
.finetune.task
import
create_text_cls_task
from
.finetune.task
import
create_img_cls_task
from
.finetune.finetune
import
finetune_and_eval
from
.finetune.task
import
ClassifierTask
from
.finetune.task
import
TextClassifierTask
from
.finetune.task
import
ImageClassifierTask
from
.finetune.task
import
SequenceLabelTask
from
.finetune.config
import
RunConfig
from
.finetune.strategy
import
AdamWeightDecayStrategy
from
.finetune.strategy
import
DefaultStrategy
...
...
paddlehub/finetune/checkpoint.py
浏览文件 @
2620edc3
...
...
@@ -26,7 +26,11 @@ from paddlehub.common.logger import logger
CKPT_FILE_NAME
=
"ckpt.meta"
def
load_checkpoint
(
checkpoint_dir
,
exe
):
def
load_checkpoint
(
checkpoint_dir
,
exe
,
main_program
=
fluid
.
default_main_program
(),
startup_program
=
fluid
.
default_startup_program
()):
ckpt_meta_path
=
os
.
path
.
join
(
checkpoint_dir
,
CKPT_FILE_NAME
)
logger
.
info
(
"Try loading checkpoint from {}"
.
format
(
ckpt_meta_path
))
if
os
.
path
.
exists
(
ckpt_meta_path
):
...
...
@@ -34,7 +38,7 @@ def load_checkpoint(checkpoint_dir, exe):
with
open
(
ckpt_meta_path
,
"rb"
)
as
f
:
ckpt
.
ParseFromString
(
f
.
read
())
fluid
.
io
.
load_persistables
(
exe
,
ckpt
.
latest_model_dir
)
fluid
.
io
.
load_persistables
(
exe
,
ckpt
.
latest_model_dir
,
main_program
)
logger
.
info
(
"PaddleHub model checkpoint loaded. current_epoch={}, "
"global_step={}"
.
format
(
ckpt
.
current_epoch
,
...
...
@@ -47,18 +51,24 @@ def load_checkpoint(checkpoint_dir, exe):
logger
.
info
(
"PaddleHub model checkpoint not found, start training from scratch..."
)
exe
.
run
(
fluid
.
default_startup_program
()
)
exe
.
run
(
startup_program
)
return
current_epoch
,
global_step
def
save_checkpoint
(
checkpoint_dir
,
current_epoch
,
global_step
,
exe
):
def
save_checkpoint
(
checkpoint_dir
,
current_epoch
,
global_step
,
exe
,
main_program
=
fluid
.
default_main_program
()):
ckpt_meta_path
=
os
.
path
.
join
(
checkpoint_dir
,
CKPT_FILE_NAME
)
ckpt
=
checkpoint_pb2
.
CheckPoint
()
model_saved_dir
=
os
.
path
.
join
(
checkpoint_dir
,
"step_%d"
%
global_step
)
logger
.
info
(
"Saving model checkpoint to {}"
.
format
(
model_saved_dir
))
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
)
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
,
main_program
=
main_program
)
ckpt
.
current_epoch
=
current_epoch
ckpt
.
global_step
=
global_step
...
...
paddlehub/finetune/evaluate.py
浏览文件 @
2620edc3
...
...
@@ -25,95 +25,6 @@ from paddlehub.common.logger import logger
import
paddlehub
as
hub
def
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
None
):
logger
.
info
(
"Evaluation on {} dataset start"
.
format
(
phase
))
test_program
=
task
.
test_program
()
main_program
=
task
.
main_program
()
loss
=
task
.
variable
(
"loss"
)
accuracy
=
task
.
variable
(
"accuracy"
)
batch_size
=
config
.
batch_size
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
exe
=
fluid
.
Executor
(
place
=
place
)
with
fluid
.
program_guard
(
test_program
):
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
num_eval_examples
=
acc_sum
=
loss_sum
=
0
test_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
phase
)
eval_time_begin
=
time
.
time
()
eval_step
=
0
for
batch
in
test_reader
():
num_batch_examples
=
len
(
batch
)
eval_step
+=
1
loss_v
,
accuracy_v
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
[
loss
.
name
,
accuracy
.
name
])
num_eval_examples
+=
num_batch_examples
if
num_eval_examples
%
10000
==
0
:
logger
.
info
(
"{} examples evaluated."
.
format
(
num_eval_examples
))
acc_sum
+=
accuracy_v
*
num_batch_examples
loss_sum
+=
loss_v
*
num_batch_examples
eval_time_used
=
time
.
time
()
-
eval_time_begin
avg_loss
=
loss_sum
/
num_eval_examples
avg_acc
=
acc_sum
/
num_eval_examples
eval_speed
=
eval_step
/
eval_time_used
logger
.
info
(
"[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]"
%
(
phase
,
avg_loss
,
avg_acc
,
eval_speed
))
return
avg_loss
,
avg_acc
,
eval_speed
def
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
None
):
fetch_list
=
[
task
.
variable
(
"labels"
).
name
,
task
.
variable
(
"infers"
).
name
,
task
.
variable
(
"seq_len"
).
name
,
task
.
variable
(
"loss"
).
name
]
logger
.
info
(
"Evaluation on {} dataset start"
.
format
(
phase
))
test_program
=
task
.
test_program
()
batch_size
=
config
.
batch_size
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
exe
=
fluid
.
Executor
(
place
=
place
)
# calculate the num of label from probs variable shape
num_labels
=
task
.
variable
(
"probs"
).
shape
[
1
]
with
fluid
.
program_guard
(
test_program
):
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
num_eval_examples
=
acc_sum
=
loss_sum
=
0
test_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
phase
)
eval_time_begin
=
time
.
time
()
eval_step
=
0
total_label
,
total_infer
,
total_correct
=
0.0
,
0.0
,
0.0
for
batch
in
test_reader
():
num_batch_examples
=
len
(
batch
)
eval_step
+=
1
np_labels
,
np_infers
,
np_lens
,
_
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
fetch_list
)
label_num
,
infer_num
,
correct_num
=
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
num_labels
,
dev_count
)
total_infer
+=
infer_num
total_label
+=
label_num
total_correct
+=
correct_num
precision
,
recall
,
f1
=
calculate_f1
(
total_label
,
total_infer
,
total_correct
)
eval_time_used
=
time
.
time
()
-
eval_time_begin
eval_speed
=
eval_step
/
eval_time_used
logger
.
info
(
"[%s evaluation] F1-Score=%f, precision=%f, recall=%f [step/sec: %.2f]"
%
(
phase
,
f1
,
precision
,
recall
,
eval_speed
))
return
f1
,
precision
,
recall
# Sequence label evaluation functions
def
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
=
1
):
def
extract_bio_chunk
(
seq
):
...
...
paddlehub/finetune/finetune.py
已删除
100644 → 0
浏览文件 @
5ee30a94
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
from
visualdl
import
LogWriter
from
paddlehub.common.logger
import
logger
from
paddlehub.common.utils
import
mkdir
from
paddlehub.finetune.config
import
RunConfig
from
paddlehub.finetune.strategy
import
AdamWeightDecayStrategy
,
DefaultStrategy
from
paddlehub.finetune.checkpoint
import
load_checkpoint
,
save_checkpoint
from
paddlehub.finetune.evaluate
import
evaluate_cls_task
,
evaluate_seq_label_task
import
paddlehub
as
hub
def
_do_memory_optimization
(
task
,
config
):
if
config
.
enable_memory_optim
:
logger
.
info
(
"Memory optimization start..."
)
task_var_name
=
task
.
metric_variable_names
()
logger
.
info
(
"Skip memory optimization on variables: {}"
.
format
(
task_var_name
))
optimize_time_begin
=
time
.
time
()
fluid
.
memory_optimize
(
input_program
=
fluid
.
default_main_program
(),
# skip memory optimization on task metric variables
skip_opt_set
=
task_var_name
)
time_used
=
time
.
time
()
-
optimize_time_begin
logger
.
info
(
"Memory optimization done! Time elapsed %f sec"
%
time_used
)
# lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
# program=task.main_program(), batch_size=config.batch_size)
# logger.info("Theoretical memory usage in training: %.2f - %.2f %s" %
# (lower_mem, upper_mem, unit)),
def
_finetune_seq_label_task
(
task
,
data_reader
,
feed_list
,
config
=
None
,
do_eval
=
False
):
"""
Finetune sequence labeling task, evaluate metric is F1, precision and recall
"""
main_program
=
task
.
main_program
()
startup_program
=
task
.
startup_program
()
loss
=
task
.
variable
(
"loss"
)
seq_len
=
task
.
variable
(
"seq_len"
)
num_epoch
=
config
.
num_epoch
batch_size
=
config
.
batch_size
log_writer
=
LogWriter
(
os
.
path
.
join
(
config
.
checkpoint_dir
,
"vdllog"
),
sync_cycle
=
1
)
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
with
fluid
.
program_guard
(
main_program
,
startup_program
):
exe
=
fluid
.
Executor
(
place
=
place
)
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
# Select strategy
if
isinstance
(
config
.
strategy
,
hub
.
AdamWeightDecayStrategy
):
scheduled_lr
=
config
.
strategy
.
execute
(
loss
,
main_program
,
data_reader
,
config
)
elif
isinstance
(
config
.
strategy
,
hub
.
DefaultStrategy
):
config
.
strategy
.
execute
(
loss
)
#TODO: add more finetune strategy
_do_memory_optimization
(
task
,
config
)
# Try to restore model training checkpoint
current_epoch
,
global_step
=
load_checkpoint
(
config
.
checkpoint_dir
,
exe
)
best_eval_f1
=
0.0
train_time_used
=
0
logger
.
info
(
"PaddleHub finetune start"
)
exe
.
run
(
fluid
.
default_startup_program
())
# add visualdl scalar
with
log_writer
.
mode
(
"train"
)
as
logw
:
train_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [train]"
)
with
log_writer
.
mode
(
"evaluate"
)
as
logw
:
eval_f1_scalar
=
logw
.
scalar
(
tag
=
"F1 [eval]"
)
eval_precision_scalar
=
logw
.
scalar
(
tag
=
"Precision [eval]"
)
eval_recall_scalar
=
logw
.
scalar
(
tag
=
"Recall [eval]"
)
# Finetune loop
for
epoch
in
range
(
current_epoch
,
num_epoch
+
1
):
train_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'train'
)
num_trained_examples
=
loss_sum
=
0
for
batch
in
train_reader
():
num_batch_examples
=
len
(
batch
)
train_time_begin
=
time
.
time
()
loss_v
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
[
loss
.
name
])
train_time_used
+=
time
.
time
()
-
train_time_begin
global_step
+=
1
num_trained_examples
+=
num_batch_examples
loss_sum
+=
loss_v
[
0
]
*
num_batch_examples
# log fintune status
if
global_step
%
config
.
log_interval
==
0
:
avg_loss
=
loss_sum
/
num_trained_examples
speed
=
config
.
log_interval
/
train_time_used
logger
.
info
(
"step %d: loss=%.5f [step/sec: %.2f]"
%
(
global_step
,
avg_loss
,
speed
))
train_loss_scalar
.
add_record
(
global_step
,
avg_loss
)
train_time_used
=
0
num_trained_examples
=
0
loss_sum
=
0
if
config
.
save_ckpt_interval
and
global_step
%
config
.
save_ckpt_interval
==
0
:
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore correct dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
epoch
,
global_step
=
global_step
,
exe
=
exe
)
if
do_eval
and
global_step
%
config
.
eval_interval
==
0
:
f1
,
precision
,
recall
=
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"dev"
,
config
=
config
)
eval_f1_scalar
.
add_record
(
global_step
,
f1
)
eval_precision_scalar
.
add_record
(
global_step
,
precision
)
eval_recall_scalar
.
add_record
(
global_step
,
recall
)
if
f1
>
best_eval_f1
:
best_eval_f1
=
f1
model_saved_dir
=
os
.
path
.
join
(
config
.
checkpoint_dir
,
"best_model"
)
logger
.
info
(
"best model saved to %s [best F1=%.5f]"
%
(
model_saved_dir
,
best_eval_f1
))
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
)
# NOTE: current saved checkpoint machanism is not completed, it can't
# resotre dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
num_epoch
+
1
,
global_step
=
global_step
,
exe
=
exe
)
# Final evaluation
if
do_eval
:
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"dev"
,
config
=
config
)
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
config
)
logger
.
info
(
"PaddleHub finetune finished."
)
def
_finetune_cls_task
(
task
,
data_reader
,
feed_list
,
config
=
None
,
do_eval
=
False
):
main_program
=
task
.
main_program
()
startup_program
=
task
.
startup_program
()
loss
=
task
.
variable
(
"loss"
)
accuracy
=
task
.
variable
(
"accuracy"
)
num_epoch
=
config
.
num_epoch
batch_size
=
config
.
batch_size
log_writer
=
LogWriter
(
os
.
path
.
join
(
config
.
checkpoint_dir
,
"vdllog"
),
sync_cycle
=
1
)
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
with
fluid
.
program_guard
(
main_program
,
startup_program
):
exe
=
fluid
.
Executor
(
place
=
place
)
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
# select strategy
if
isinstance
(
config
.
strategy
,
hub
.
AdamWeightDecayStrategy
):
scheduled_lr
=
config
.
strategy
.
execute
(
loss
,
main_program
,
data_reader
,
config
)
elif
isinstance
(
config
.
strategy
,
hub
.
DefaultStrategy
):
config
.
strategy
.
execute
(
loss
)
#TODO: add more finetune strategy
_do_memory_optimization
(
task
,
config
)
# Try to restore model training checkpoint
current_epoch
,
global_step
=
load_checkpoint
(
config
.
checkpoint_dir
,
exe
)
best_eval_acc
=
0.0
train_time_used
=
0
logger
.
info
(
"PaddleHub finetune start"
)
# add visualdl scalar
with
log_writer
.
mode
(
"train"
)
as
logw
:
train_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [train]"
)
train_acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [train]"
)
with
log_writer
.
mode
(
"evaluate"
)
as
logw
:
eval_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [eval]"
)
eval_acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [eval]"
)
exe
.
run
(
fluid
.
default_startup_program
())
# Finetune loop
for
epoch
in
range
(
current_epoch
,
num_epoch
+
1
):
train_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'train'
)
num_trained_examples
=
acc_sum
=
loss_sum
=
0
for
batch
in
train_reader
():
num_batch_examples
=
len
(
batch
)
train_time_begin
=
time
.
time
()
loss_v
,
accuracy_v
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
[
loss
.
name
,
accuracy
.
name
],
return_numpy
=
False
)
loss_v
=
np
.
array
(
loss_v
)
accuracy_v
=
np
.
array
(
accuracy_v
)
train_time_used
+=
time
.
time
()
-
train_time_begin
global_step
+=
1
num_trained_examples
+=
num_batch_examples
acc_sum
+=
accuracy_v
*
num_batch_examples
loss_sum
+=
loss_v
*
num_batch_examples
# log fintune status
if
global_step
%
config
.
log_interval
==
0
:
avg_loss
=
loss_sum
/
num_trained_examples
avg_acc
=
acc_sum
/
num_trained_examples
speed
=
config
.
log_interval
/
train_time_used
logger
.
info
(
"step %d: loss=%.5f acc=%.5f [step/sec: %.2f]"
%
(
global_step
,
avg_loss
,
avg_acc
,
speed
))
# record visualdl log
train_loss_scalar
.
add_record
(
global_step
,
avg_loss
)
train_acc_scalar
.
add_record
(
global_step
,
avg_acc
)
train_time_used
=
0
num_trained_examples
=
acc_sum
=
loss_sum
=
0
if
config
.
save_ckpt_interval
and
global_step
%
config
.
save_ckpt_interval
==
0
:
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
epoch
,
global_step
=
global_step
,
exe
=
exe
)
if
do_eval
and
global_step
%
config
.
eval_interval
==
0
:
eval_loss
,
eval_acc
,
eval_perf
=
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"val"
,
config
=
config
)
eval_loss_scalar
.
add_record
(
global_step
,
eval_loss
)
eval_acc_scalar
.
add_record
(
global_step
,
eval_acc
)
if
eval_acc
>
best_eval_acc
:
best_eval_acc
=
eval_acc
model_saved_dir
=
os
.
path
.
join
(
config
.
checkpoint_dir
,
"best_model"
)
logger
.
info
(
"best model saved to %s [best accuracy=%.5f]"
%
(
model_saved_dir
,
best_eval_acc
))
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
)
# NOTE: current saved checkpoint machanism is not completed, it can't
# resotre dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
num_epoch
+
1
,
global_step
=
global_step
,
exe
=
exe
)
# Final evaluation
if
do_eval
:
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"dev"
,
config
=
config
)
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
config
)
logger
.
info
(
"PaddleHub finetune finished."
)
def
finetune_and_eval
(
task
,
data_reader
,
feed_list
,
config
=
None
):
if
config
is
None
:
config
=
RunConfig
()
if
not
os
.
path
.
exists
(
config
.
checkpoint_dir
):
mkdir
(
config
.
checkpoint_dir
)
if
task
.
task_type
==
"sequence_labeling"
:
_finetune_seq_label_task
(
task
,
data_reader
,
feed_list
,
config
,
do_eval
=
True
)
elif
task
.
task_type
==
"image_classification"
or
task
.
task_type
==
"text_classification"
:
_finetune_cls_task
(
task
,
data_reader
,
feed_list
,
config
,
do_eval
=
True
)
paddlehub/finetune/strategy.py
浏览文件 @
2620edc3
...
...
@@ -74,7 +74,7 @@ class DefaultStrategy(object):
self
.
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
self
.
learning_rate
)
def
execute
(
self
,
loss
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
if
self
.
optimizer
is
not
None
:
self
.
optimizer
.
minimize
(
loss
)
else
:
...
...
@@ -114,7 +114,8 @@ class AdamWeightDecayStrategy(DefaultStrategy):
def
weight_decay
(
self
):
return
self
.
_weight_decay
def
execute
(
self
,
loss
,
main_program
,
data_reader
,
config
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
main_program
=
loss
.
block
.
program
# calculate wamrup step
dev_count
=
self
.
_get_dev_count
(
config
)
data_reader
.
data_generator
(
...
...
@@ -158,7 +159,7 @@ class DefaultFinetuneStrategy(DefaultStrategy):
self
.
_optimizer_name
=
optimizer_name
self
.
regularization_coeff
=
regularization_coeff
def
execute
(
self
,
loss
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
# get pretrained parameters
program
=
loss
.
block
.
program
global_block
=
program
.
global_block
()
...
...
@@ -187,7 +188,7 @@ class L2SPFinetuneStrategy(DefaultStrategy):
self
.
_optimizer_name
=
optimizer_name
self
.
regularization_coeff
=
regularization_coeff
def
execute
(
self
,
loss
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
# get pretrained parameters
program
=
loss
.
block
.
program
global_block
=
program
.
global_block
()
...
...
paddlehub/finetune/task.py
浏览文件 @
2620edc3
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录