提交 2620edc3 编写于 作者: W wuzewu

Refactoring the task class

上级 5ee30a94
...@@ -8,7 +8,7 @@ import numpy as np ...@@ -8,7 +8,7 @@ import numpy as np
# yapf: disable # yapf: disable
parser = argparse.ArgumentParser(__doc__) parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=1, help="Number of epoches for fine-tuning.") parser.add_argument("--num_epoch", type=int, default=1, help="Number of epoches for fine-tuning.")
parser.add_argument("--use_gpu", type=bool, default=False, help="Whether use GPU for fine-tuning.") parser.add_argument("--use_gpu", type=bool, default=True, help="Whether use GPU for fine-tuning.")
parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to save log data.") parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.") parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="resnet50", help="Module used as feature extractor.") parser.add_argument("--module", type=str, default="resnet50", help="Module used as feature extractor.")
...@@ -50,11 +50,9 @@ def finetune(args): ...@@ -50,11 +50,9 @@ def finetune(args):
dataset=dataset) dataset=dataset)
feature_map = output_dict["feature_map"] feature_map = output_dict["feature_map"]
task = hub.create_img_cls_task(
feature=feature_map, num_classes=dataset.num_labels)
img = input_dict["image"] img = input_dict["image"]
feed_list = [img.name, task.variable('label').name] feed_list = [img.name]
config = hub.RunConfig( config = hub.RunConfig(
use_cuda=args.use_gpu, use_cuda=args.use_gpu,
...@@ -64,8 +62,13 @@ def finetune(args): ...@@ -64,8 +62,13 @@ def finetune(args):
checkpoint_dir=args.checkpoint_dir, checkpoint_dir=args.checkpoint_dir,
strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) strategy=hub.finetune.strategy.DefaultFinetuneStrategy())
hub.finetune_and_eval( task = hub.ImageClassifierTask(
task, feed_list=feed_list, data_reader=data_reader, config=config) data_reader=data_reader,
feed_list=feed_list,
feature=feature_map,
num_classes=dataset.num_labels,
config=config)
task.finetune_and_eval()
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -9,6 +9,7 @@ import numpy as np ...@@ -9,6 +9,7 @@ import numpy as np
parser = argparse.ArgumentParser(__doc__) parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--use_gpu", type=bool, default=False, help="Whether use GPU for predict.") parser.add_argument("--use_gpu", type=bool, default=False, help="Whether use GPU for predict.")
parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to save log data.") parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to save log data.")
parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.")
parser.add_argument("--module", type=str, default="resnet50", help="Module used as a feature extractor.") parser.add_argument("--module", type=str, default="resnet50", help="Module used as a feature extractor.")
parser.add_argument("--dataset", type=str, default="flowers", help="Dataset to finetune.") parser.add_argument("--dataset", type=str, default="flowers", help="Dataset to finetune.")
# yapf: enable. # yapf: enable.
...@@ -24,6 +25,8 @@ module_map = { ...@@ -24,6 +25,8 @@ module_map = {
def predict(args): def predict(args):
module = hub.Module(name=args.module)
input_dict, output_dict, program = module.context(trainable=True)
if args.dataset.lower() == "flowers": if args.dataset.lower() == "flowers":
dataset = hub.dataset.Flowers() dataset = hub.dataset.Flowers()
...@@ -38,45 +41,43 @@ def predict(args): ...@@ -38,45 +41,43 @@ def predict(args):
else: else:
raise ValueError("%s dataset is not defined" % args.dataset) raise ValueError("%s dataset is not defined" % args.dataset)
label_map = dataset.label_dict()
num_labels = len(label_map)
module = hub.Module(name=args.module)
input_dict, output_dict, program = module.context()
data_reader = hub.reader.ImageClassificationReader( data_reader = hub.reader.ImageClassificationReader(
image_width=module.get_expected_image_width(), image_width=module.get_expected_image_width(),
image_height=module.get_expected_image_height(), image_height=module.get_expected_image_height(),
images_mean=module.get_pretrained_images_mean(), images_mean=module.get_pretrained_images_mean(),
images_std=module.get_pretrained_images_std(), images_std=module.get_pretrained_images_std(),
dataset=None) dataset=dataset)
img = input_dict["image"]
feature_map = output_dict["feature_map"] feature_map = output_dict["feature_map"]
task = hub.create_img_cls_task(feature=feature_map, num_classes=num_labels)
img = input_dict["image"] img = input_dict["image"]
feed_list = [img.name] feed_list = [img.name]
with fluid.program_guard(task.inference_program()): config = hub.RunConfig(
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() use_cuda=args.use_gpu,
exe = fluid.Executor(place) batch_size=args.batch_size,
pretrained_model_dir = os.path.join(args.checkpoint_dir, "best_model") enable_memory_optim=False,
if not os.path.exists(pretrained_model_dir): checkpoint_dir=args.checkpoint_dir,
hub.logger.error( strategy=hub.finetune.strategy.DefaultFinetuneStrategy())
"pretrained model dir %s didn't exist" % pretrained_model_dir)
exit(1)
fluid.io.load_persistables(exe, pretrained_model_dir)
feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
data = ["test/test_img_roses.jpg", "test/test_img_daisy.jpg"]
predict_reader = data_reader.data_generator( task = hub.ClassifierTask(
phase="predict", batch_size=1, data=data) data_reader=data_reader,
for index, batch in enumerate(predict_reader()): feed_list=feed_list,
result, = exe.run( feature=feature_map,
feed=feeder.feed(batch), fetch_list=[task.variable('probs')]) num_classes=dataset.num_labels,
predict_result = label_map[np.argsort(result[0])[::-1][0]] config=config)
print("input %i is %s, and the predict result is %s" %
(index, data[index], predict_result)) data = ["./test/test_img_daisy.jpg", "./test/test_img_roses.jpg"]
label_map = dataset.label_dict()
for result in task.predict(data=data):
result = np.argmax(result, axis=2)
index = 0
for batch in result:
for predict_result in batch:
index += 1
predict_result = label_map[predict_result]
print("input %i is %s, and the predict result is %s" %
(index, data[index - 1], predict_result))
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -38,11 +38,10 @@ from .module.manager import default_module_manager ...@@ -38,11 +38,10 @@ from .module.manager import default_module_manager
from .io.type import DataType from .io.type import DataType
from .finetune.task import Task from .finetune.task import ClassifierTask
from .finetune.task import create_seq_label_task from .finetune.task import TextClassifierTask
from .finetune.task import create_text_cls_task from .finetune.task import ImageClassifierTask
from .finetune.task import create_img_cls_task from .finetune.task import SequenceLabelTask
from .finetune.finetune import finetune_and_eval
from .finetune.config import RunConfig from .finetune.config import RunConfig
from .finetune.strategy import AdamWeightDecayStrategy from .finetune.strategy import AdamWeightDecayStrategy
from .finetune.strategy import DefaultStrategy from .finetune.strategy import DefaultStrategy
......
...@@ -26,7 +26,11 @@ from paddlehub.common.logger import logger ...@@ -26,7 +26,11 @@ from paddlehub.common.logger import logger
CKPT_FILE_NAME = "ckpt.meta" CKPT_FILE_NAME = "ckpt.meta"
def load_checkpoint(checkpoint_dir, exe): def load_checkpoint(checkpoint_dir,
exe,
main_program=fluid.default_main_program(),
startup_program=fluid.default_startup_program()):
ckpt_meta_path = os.path.join(checkpoint_dir, CKPT_FILE_NAME) ckpt_meta_path = os.path.join(checkpoint_dir, CKPT_FILE_NAME)
logger.info("Try loading checkpoint from {}".format(ckpt_meta_path)) logger.info("Try loading checkpoint from {}".format(ckpt_meta_path))
if os.path.exists(ckpt_meta_path): if os.path.exists(ckpt_meta_path):
...@@ -34,7 +38,7 @@ def load_checkpoint(checkpoint_dir, exe): ...@@ -34,7 +38,7 @@ def load_checkpoint(checkpoint_dir, exe):
with open(ckpt_meta_path, "rb") as f: with open(ckpt_meta_path, "rb") as f:
ckpt.ParseFromString(f.read()) ckpt.ParseFromString(f.read())
fluid.io.load_persistables(exe, ckpt.latest_model_dir) fluid.io.load_persistables(exe, ckpt.latest_model_dir, main_program)
logger.info("PaddleHub model checkpoint loaded. current_epoch={}, " logger.info("PaddleHub model checkpoint loaded. current_epoch={}, "
"global_step={}".format(ckpt.current_epoch, "global_step={}".format(ckpt.current_epoch,
...@@ -47,18 +51,24 @@ def load_checkpoint(checkpoint_dir, exe): ...@@ -47,18 +51,24 @@ def load_checkpoint(checkpoint_dir, exe):
logger.info( logger.info(
"PaddleHub model checkpoint not found, start training from scratch..." "PaddleHub model checkpoint not found, start training from scratch..."
) )
exe.run(fluid.default_startup_program()) exe.run(startup_program)
return current_epoch, global_step return current_epoch, global_step
def save_checkpoint(checkpoint_dir, current_epoch, global_step, exe): def save_checkpoint(checkpoint_dir,
current_epoch,
global_step,
exe,
main_program=fluid.default_main_program()):
ckpt_meta_path = os.path.join(checkpoint_dir, CKPT_FILE_NAME) ckpt_meta_path = os.path.join(checkpoint_dir, CKPT_FILE_NAME)
ckpt = checkpoint_pb2.CheckPoint() ckpt = checkpoint_pb2.CheckPoint()
model_saved_dir = os.path.join(checkpoint_dir, "step_%d" % global_step) model_saved_dir = os.path.join(checkpoint_dir, "step_%d" % global_step)
logger.info("Saving model checkpoint to {}".format(model_saved_dir)) logger.info("Saving model checkpoint to {}".format(model_saved_dir))
fluid.io.save_persistables(exe, dirname=model_saved_dir) fluid.io.save_persistables(
exe, dirname=model_saved_dir, main_program=main_program)
ckpt.current_epoch = current_epoch ckpt.current_epoch = current_epoch
ckpt.global_step = global_step ckpt.global_step = global_step
......
...@@ -25,95 +25,6 @@ from paddlehub.common.logger import logger ...@@ -25,95 +25,6 @@ from paddlehub.common.logger import logger
import paddlehub as hub import paddlehub as hub
def evaluate_cls_task(task, data_reader, feed_list, phase="test", config=None):
logger.info("Evaluation on {} dataset start".format(phase))
test_program = task.test_program()
main_program = task.main_program()
loss = task.variable("loss")
accuracy = task.variable("accuracy")
batch_size = config.batch_size
place, dev_count = hub.common.get_running_device_info(config)
exe = fluid.Executor(place=place)
with fluid.program_guard(test_program):
data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
num_eval_examples = acc_sum = loss_sum = 0
test_reader = data_reader.data_generator(
batch_size=batch_size, phase=phase)
eval_time_begin = time.time()
eval_step = 0
for batch in test_reader():
num_batch_examples = len(batch)
eval_step += 1
loss_v, accuracy_v = exe.run(
feed=data_feeder.feed(batch),
fetch_list=[loss.name, accuracy.name])
num_eval_examples += num_batch_examples
if num_eval_examples % 10000 == 0:
logger.info("{} examples evaluated.".format(num_eval_examples))
acc_sum += accuracy_v * num_batch_examples
loss_sum += loss_v * num_batch_examples
eval_time_used = time.time() - eval_time_begin
avg_loss = loss_sum / num_eval_examples
avg_acc = acc_sum / num_eval_examples
eval_speed = eval_step / eval_time_used
logger.info(
"[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]" %
(phase, avg_loss, avg_acc, eval_speed))
return avg_loss, avg_acc, eval_speed
def evaluate_seq_label_task(task,
data_reader,
feed_list,
phase="test",
config=None):
fetch_list = [
task.variable("labels").name,
task.variable("infers").name,
task.variable("seq_len").name,
task.variable("loss").name
]
logger.info("Evaluation on {} dataset start".format(phase))
test_program = task.test_program()
batch_size = config.batch_size
place, dev_count = hub.common.get_running_device_info(config)
exe = fluid.Executor(place=place)
# calculate the num of label from probs variable shape
num_labels = task.variable("probs").shape[1]
with fluid.program_guard(test_program):
data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
num_eval_examples = acc_sum = loss_sum = 0
test_reader = data_reader.data_generator(
batch_size=batch_size, phase=phase)
eval_time_begin = time.time()
eval_step = 0
total_label, total_infer, total_correct = 0.0, 0.0, 0.0
for batch in test_reader():
num_batch_examples = len(batch)
eval_step += 1
np_labels, np_infers, np_lens, _ = exe.run(
feed=data_feeder.feed(batch), fetch_list=fetch_list)
label_num, infer_num, correct_num = chunk_eval(
np_labels, np_infers, np_lens, num_labels, dev_count)
total_infer += infer_num
total_label += label_num
total_correct += correct_num
precision, recall, f1 = calculate_f1(total_label, total_infer,
total_correct)
eval_time_used = time.time() - eval_time_begin
eval_speed = eval_step / eval_time_used
logger.info(
"[%s evaluation] F1-Score=%f, precision=%f, recall=%f [step/sec: %.2f]"
% (phase, f1, precision, recall, eval_speed))
return f1, precision, recall
# Sequence label evaluation functions # Sequence label evaluation functions
def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1): def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1):
def extract_bio_chunk(seq): def extract_bio_chunk(seq):
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import paddle
import paddle.fluid as fluid
import numpy as np
from visualdl import LogWriter
from paddlehub.common.logger import logger
from paddlehub.common.utils import mkdir
from paddlehub.finetune.config import RunConfig
from paddlehub.finetune.strategy import AdamWeightDecayStrategy, DefaultStrategy
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
from paddlehub.finetune.evaluate import evaluate_cls_task, evaluate_seq_label_task
import paddlehub as hub
def _do_memory_optimization(task, config):
if config.enable_memory_optim:
logger.info("Memory optimization start...")
task_var_name = task.metric_variable_names()
logger.info(
"Skip memory optimization on variables: {}".format(task_var_name))
optimize_time_begin = time.time()
fluid.memory_optimize(
input_program=fluid.default_main_program(),
# skip memory optimization on task metric variables
skip_opt_set=task_var_name)
time_used = time.time() - optimize_time_begin
logger.info("Memory optimization done! Time elapsed %f sec" % time_used)
# lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
# program=task.main_program(), batch_size=config.batch_size)
# logger.info("Theoretical memory usage in training: %.2f - %.2f %s" %
# (lower_mem, upper_mem, unit)),
def _finetune_seq_label_task(task,
data_reader,
feed_list,
config=None,
do_eval=False):
"""
Finetune sequence labeling task, evaluate metric is F1, precision and recall
"""
main_program = task.main_program()
startup_program = task.startup_program()
loss = task.variable("loss")
seq_len = task.variable("seq_len")
num_epoch = config.num_epoch
batch_size = config.batch_size
log_writer = LogWriter(
os.path.join(config.checkpoint_dir, "vdllog"), sync_cycle=1)
place, dev_count = hub.common.get_running_device_info(config)
with fluid.program_guard(main_program, startup_program):
exe = fluid.Executor(place=place)
data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
# Select strategy
if isinstance(config.strategy, hub.AdamWeightDecayStrategy):
scheduled_lr = config.strategy.execute(loss, main_program,
data_reader, config)
elif isinstance(config.strategy, hub.DefaultStrategy):
config.strategy.execute(loss)
#TODO: add more finetune strategy
_do_memory_optimization(task, config)
# Try to restore model training checkpoint
current_epoch, global_step = load_checkpoint(config.checkpoint_dir, exe)
best_eval_f1 = 0.0
train_time_used = 0
logger.info("PaddleHub finetune start")
exe.run(fluid.default_startup_program())
# add visualdl scalar
with log_writer.mode("train") as logw:
train_loss_scalar = logw.scalar(tag="Loss [train]")
with log_writer.mode("evaluate") as logw:
eval_f1_scalar = logw.scalar(tag="F1 [eval]")
eval_precision_scalar = logw.scalar(tag="Precision [eval]")
eval_recall_scalar = logw.scalar(tag="Recall [eval]")
# Finetune loop
for epoch in range(current_epoch, num_epoch + 1):
train_reader = data_reader.data_generator(
batch_size=batch_size, phase='train')
num_trained_examples = loss_sum = 0
for batch in train_reader():
num_batch_examples = len(batch)
train_time_begin = time.time()
loss_v = exe.run(
feed=data_feeder.feed(batch), fetch_list=[loss.name])
train_time_used += time.time() - train_time_begin
global_step += 1
num_trained_examples += num_batch_examples
loss_sum += loss_v[0] * num_batch_examples
# log fintune status
if global_step % config.log_interval == 0:
avg_loss = loss_sum / num_trained_examples
speed = config.log_interval / train_time_used
logger.info("step %d: loss=%.5f [step/sec: %.2f]" %
(global_step, avg_loss, speed))
train_loss_scalar.add_record(global_step, avg_loss)
train_time_used = 0
num_trained_examples = 0
loss_sum = 0
if config.save_ckpt_interval and global_step % config.save_ckpt_interval == 0:
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore correct dataset training status
save_checkpoint(
checkpoint_dir=config.checkpoint_dir,
current_epoch=epoch,
global_step=global_step,
exe=exe)
if do_eval and global_step % config.eval_interval == 0:
f1, precision, recall = evaluate_seq_label_task(
task,
data_reader,
feed_list,
phase="dev",
config=config)
eval_f1_scalar.add_record(global_step, f1)
eval_precision_scalar.add_record(global_step, precision)
eval_recall_scalar.add_record(global_step, recall)
if f1 > best_eval_f1:
best_eval_f1 = f1
model_saved_dir = os.path.join(config.checkpoint_dir,
"best_model")
logger.info("best model saved to %s [best F1=%.5f]" %
(model_saved_dir, best_eval_f1))
fluid.io.save_persistables(exe, dirname=model_saved_dir)
# NOTE: current saved checkpoint machanism is not completed, it can't
# resotre dataset training status
save_checkpoint(
checkpoint_dir=config.checkpoint_dir,
current_epoch=num_epoch + 1,
global_step=global_step,
exe=exe)
# Final evaluation
if do_eval:
evaluate_seq_label_task(
task, data_reader, feed_list, phase="dev", config=config)
evaluate_seq_label_task(
task, data_reader, feed_list, phase="test", config=config)
logger.info("PaddleHub finetune finished.")
def _finetune_cls_task(task, data_reader, feed_list, config=None,
do_eval=False):
main_program = task.main_program()
startup_program = task.startup_program()
loss = task.variable("loss")
accuracy = task.variable("accuracy")
num_epoch = config.num_epoch
batch_size = config.batch_size
log_writer = LogWriter(
os.path.join(config.checkpoint_dir, "vdllog"), sync_cycle=1)
place, dev_count = hub.common.get_running_device_info(config)
with fluid.program_guard(main_program, startup_program):
exe = fluid.Executor(place=place)
data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
# select strategy
if isinstance(config.strategy, hub.AdamWeightDecayStrategy):
scheduled_lr = config.strategy.execute(loss, main_program,
data_reader, config)
elif isinstance(config.strategy, hub.DefaultStrategy):
config.strategy.execute(loss)
#TODO: add more finetune strategy
_do_memory_optimization(task, config)
# Try to restore model training checkpoint
current_epoch, global_step = load_checkpoint(config.checkpoint_dir, exe)
best_eval_acc = 0.0
train_time_used = 0
logger.info("PaddleHub finetune start")
# add visualdl scalar
with log_writer.mode("train") as logw:
train_loss_scalar = logw.scalar(tag="Loss [train]")
train_acc_scalar = logw.scalar(tag="Accuracy [train]")
with log_writer.mode("evaluate") as logw:
eval_loss_scalar = logw.scalar(tag="Loss [eval]")
eval_acc_scalar = logw.scalar(tag="Accuracy [eval]")
exe.run(fluid.default_startup_program())
# Finetune loop
for epoch in range(current_epoch, num_epoch + 1):
train_reader = data_reader.data_generator(
batch_size=batch_size, phase='train')
num_trained_examples = acc_sum = loss_sum = 0
for batch in train_reader():
num_batch_examples = len(batch)
train_time_begin = time.time()
loss_v, accuracy_v = exe.run(
feed=data_feeder.feed(batch),
fetch_list=[loss.name, accuracy.name],
return_numpy=False)
loss_v = np.array(loss_v)
accuracy_v = np.array(accuracy_v)
train_time_used += time.time() - train_time_begin
global_step += 1
num_trained_examples += num_batch_examples
acc_sum += accuracy_v * num_batch_examples
loss_sum += loss_v * num_batch_examples
# log fintune status
if global_step % config.log_interval == 0:
avg_loss = loss_sum / num_trained_examples
avg_acc = acc_sum / num_trained_examples
speed = config.log_interval / train_time_used
logger.info("step %d: loss=%.5f acc=%.5f [step/sec: %.2f]" %
(global_step, avg_loss, avg_acc, speed))
# record visualdl log
train_loss_scalar.add_record(global_step, avg_loss)
train_acc_scalar.add_record(global_step, avg_acc)
train_time_used = 0
num_trained_examples = acc_sum = loss_sum = 0
if config.save_ckpt_interval and global_step % config.save_ckpt_interval == 0:
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore dataset training status
save_checkpoint(
checkpoint_dir=config.checkpoint_dir,
current_epoch=epoch,
global_step=global_step,
exe=exe)
if do_eval and global_step % config.eval_interval == 0:
eval_loss, eval_acc, eval_perf = evaluate_cls_task(
task,
data_reader,
feed_list,
phase="val",
config=config)
eval_loss_scalar.add_record(global_step, eval_loss)
eval_acc_scalar.add_record(global_step, eval_acc)
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
model_saved_dir = os.path.join(config.checkpoint_dir,
"best_model")
logger.info(
"best model saved to %s [best accuracy=%.5f]" %
(model_saved_dir, best_eval_acc))
fluid.io.save_persistables(exe, dirname=model_saved_dir)
# NOTE: current saved checkpoint machanism is not completed, it can't
# resotre dataset training status
save_checkpoint(
checkpoint_dir=config.checkpoint_dir,
current_epoch=num_epoch + 1,
global_step=global_step,
exe=exe)
# Final evaluation
if do_eval:
evaluate_cls_task(
task, data_reader, feed_list, phase="dev", config=config)
evaluate_cls_task(
task, data_reader, feed_list, phase="test", config=config)
logger.info("PaddleHub finetune finished.")
def finetune_and_eval(task, data_reader, feed_list, config=None):
if config is None:
config = RunConfig()
if not os.path.exists(config.checkpoint_dir):
mkdir(config.checkpoint_dir)
if task.task_type == "sequence_labeling":
_finetune_seq_label_task(
task, data_reader, feed_list, config, do_eval=True)
elif task.task_type == "image_classification" or task.task_type == "text_classification":
_finetune_cls_task(task, data_reader, feed_list, config, do_eval=True)
...@@ -74,7 +74,7 @@ class DefaultStrategy(object): ...@@ -74,7 +74,7 @@ class DefaultStrategy(object):
self.optimizer = fluid.optimizer.Adam( self.optimizer = fluid.optimizer.Adam(
learning_rate=self.learning_rate) learning_rate=self.learning_rate)
def execute(self, loss): def execute(self, loss, data_reader, config):
if self.optimizer is not None: if self.optimizer is not None:
self.optimizer.minimize(loss) self.optimizer.minimize(loss)
else: else:
...@@ -114,7 +114,8 @@ class AdamWeightDecayStrategy(DefaultStrategy): ...@@ -114,7 +114,8 @@ class AdamWeightDecayStrategy(DefaultStrategy):
def weight_decay(self): def weight_decay(self):
return self._weight_decay return self._weight_decay
def execute(self, loss, main_program, data_reader, config): def execute(self, loss, data_reader, config):
main_program = loss.block.program
# calculate wamrup step # calculate wamrup step
dev_count = self._get_dev_count(config) dev_count = self._get_dev_count(config)
data_reader.data_generator( data_reader.data_generator(
...@@ -158,7 +159,7 @@ class DefaultFinetuneStrategy(DefaultStrategy): ...@@ -158,7 +159,7 @@ class DefaultFinetuneStrategy(DefaultStrategy):
self._optimizer_name = optimizer_name self._optimizer_name = optimizer_name
self.regularization_coeff = regularization_coeff self.regularization_coeff = regularization_coeff
def execute(self, loss): def execute(self, loss, data_reader, config):
# get pretrained parameters # get pretrained parameters
program = loss.block.program program = loss.block.program
global_block = program.global_block() global_block = program.global_block()
...@@ -187,7 +188,7 @@ class L2SPFinetuneStrategy(DefaultStrategy): ...@@ -187,7 +188,7 @@ class L2SPFinetuneStrategy(DefaultStrategy):
self._optimizer_name = optimizer_name self._optimizer_name = optimizer_name
self.regularization_coeff = regularization_coeff self.regularization_coeff = regularization_coeff
def execute(self, loss): def execute(self, loss, data_reader, config):
# get pretrained parameters # get pretrained parameters
program = loss.block.program program = loss.block.program
global_block = program.global_block() global_block = program.global_block()
......
...@@ -23,73 +23,320 @@ import multiprocessing ...@@ -23,73 +23,320 @@ import multiprocessing
import numpy as np import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from visualdl import LogWriter
class Task(object): import paddlehub as hub
""" from paddlehub.common.utils import mkdir
A simple transfer learning task definition, from paddlehub.common.logger import logger
including Paddle's main_program, startup_program and inference program from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
""" from paddlehub.finetune.evaluate import chunk_eval, calculate_f1
from paddlehub.finetune.config import RunConfig
__all__ = [
"ClassifierTask", "ImageClassifierTask", "TextClassifierTask",
"SequenceLabelTask"
]
class RunState(object):
def __init__(self, length):
self.run_time_begin = time.time()
self.run_step = 0
self.run_examples = 0
self.run_results = [0] * length
self.run_time_used = 0
self.run_speed = 0.0
def __add__(self, other):
self.run_step += other.run_step
self.run_examples += other.run_examples
for index in range(len(self.run_results)):
self.run_results[index] += other.run_results[index]
return self
def update(self):
self.run_time_used = time.time() - self.run_time_begin
self.run_speed = self.run_step / self.run_time_used
return self
class BasicTask(object):
def __init__(self, def __init__(self,
task_type, feed_list,
graph_var_dict, data_reader,
main_program, main_program=None,
startup_program, startup_program=None,
inference_program=None): config=None):
self.task_type = task_type self.data_reader = data_reader
self.graph_var_dict = graph_var_dict self.main_program = main_program if main_program else fluid.default_main_program(
self._main_program = main_program )
self._startup_program = startup_program self.startup_program = startup_program if startup_program else fluid.default_startup_program(
self._inference_program = inference_program )
self._test_program = main_program.clone(for_test=True) self.config = config if config else RunConfig()
self.place, self.device_count = hub.common.get_running_device_info(
def variable(self, var_name): self.config)
if var_name in self.graph_var_dict: self.exe = fluid.Executor(place=self.place)
return self.graph_var_dict[var_name] self.feed_list = feed_list
self.metrics = []
raise KeyError("var_name {} not in task graph".format(var_name)) self.is_inititalized = False
self.current_step = 0
def main_program(self): self.current_epoch = 0
return self._main_program
def _init_start_event(self):
def startup_program(self): pass
return self._startup_program
def _init_end_event(self):
def inference_program(self): pass
return self._inference_program
def _eval_start_event(self, phase):
def test_program(self): logger.info("Evaluation on {} dataset start".format(phase))
return self._test_program
def _eval_end_event(self, phase, run_state):
def metric_variable_names(self): logger.info("[%s dataset evaluation result] [step/sec: %.2f]" %
metric_variable_names = [] (phase, run_state.run_speed))
for var_name in self.graph_var_dict:
metric_variable_names.append(var_name) def _log_interval_event(self, run_state):
logger.info("step %d: [step/sec: %.2f]" % (self.current_step,
return metric_variable_names run_state.run_speed))
def _save_ckpt_interval_event(self):
def create_text_cls_task(feature, num_classes, hidden_units=None): self.save_checkpoint(self.current_epoch, self.current_step)
"""
Append a multi-layer perceptron classifier for binary classification base def _eval_interval_event(self):
on input feature self.eval(phase="dev")
"""
program = feature.block.program def _run_step_event(self, phase, run_state):
with fluid.program_guard(program): if phase == "predict":
cls_feats = fluid.layers.dropout( yield run_state.run_results
x=feature,
dropout_prob=0.1, def _finetune_start_event(self):
dropout_implementation="upscale_in_train") logger.info("PaddleHub finetune start")
# append fully connected layer according to hidden_units def _finetune_end_event(self, run_state):
if hidden_units is not None: logger.info("PaddleHub finetune finished.")
for n_hidden in hidden_units:
cls_feats = fluid.layers.fc(input=cls_feats, size=n_hidden) def _build_net(self):
raise NotImplementedError
def _add_loss(self):
raise NotImplementedError
def _add_label(self):
raise NotImplementedError
def _add_metrics(self):
raise NotImplementedError
def _init_if_necessary(self, load_best_model=False):
if not self.is_inititalized:
self._init_start_event()
with fluid.program_guard(self.main_program):
self.output = self._build_net()
self.inference_program = self.main_program.clone(for_test=True)
self._add_label()
self._add_loss()
self._add_metrics()
self.test_program = self.main_program.clone(for_test=True)
self.config.strategy.execute(self.loss, self.data_reader,
self.config)
self.loss.persistable = True
for metrics in self.metrics:
metrics.persistable = True
self.output.persistable = True
self.build_strategy = fluid.BuildStrategy()
if self.config.enable_memory_optim:
self.build_strategy.memory_optimize = True
else:
self.build_strategy.memory_optimize = False
self.main_program_compiled = fluid.CompiledProgram(
self.main_program).with_data_parallel(
loss_name=self.loss.name,
build_strategy=self.build_strategy)
self.inference_program_compiled = fluid.CompiledProgram(
self.inference_program).with_data_parallel(
share_vars_from=self.main_program_compiled,
build_strategy=self.build_strategy)
self.test_program_compiled = fluid.CompiledProgram(
self.test_program).with_data_parallel(
share_vars_from=self.main_program_compiled,
build_strategy=self.build_strategy)
self.load_checkpoint(load_best_model=load_best_model)
if not os.path.exists(self.config.checkpoint_dir):
mkdir(self.config.checkpoint_dir)
vdl_log_dir = os.path.join(self.config.checkpoint_dir, "vdllog")
self.log_writer = LogWriter(vdl_log_dir, sync_cycle=1)
self.is_inititalized = True
self._init_end_event()
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore dataset training status
def save_checkpoint(self, epoch, step):
save_checkpoint(
checkpoint_dir=self.config.checkpoint_dir,
current_epoch=self.current_epoch,
global_step=self.current_step,
exe=self.exe,
main_program=self.main_program)
def load_checkpoint(self, load_best_model=False):
self.current_epoch, self.current_step = load_checkpoint(
self.config.checkpoint_dir,
self.exe,
main_program=self.main_program)
if load_best_model:
model_saved_dir = os.path.join(self.config.checkpoint_dir,
"best_model")
if os.path.exists(model_saved_dir):
fluid.io.load_persistables(
executor=self.exe,
dirname=model_saved_dir,
main_program=self.main_program)
def get_feed_list(self, phase):
if phase in ["train", "dev", "val", "test"]:
return self.feed_list + [self.label.name]
return self.feed_list
def get_fetch_list(self, phase):
metrics_name = [metric.name for metric in self.metrics]
if phase in ["train", "dev", "val", "test"]:
return metrics_name + [self.loss.name]
return [self.output.name]
def finetune_and_eval(self):
self.finetune(do_eval=True)
def finetune(self, do_eval=False):
self._init_if_necessary()
self._finetune_start_event()
run_states = []
if self.current_epoch <= self.config.num_epoch:
# Start to finetune
with fluid.program_guard(self.main_program):
while self.current_epoch <= self.config.num_epoch:
train_reader = self.data_reader.data_generator(
batch_size=self.config.batch_size, phase='train')
run_states = self._run(
train_reader,
phase="train",
do_eval=do_eval,
program_compiled=self.main_program_compiled)
self.current_epoch += 1
# Save checkpoint after finetune
self.save_checkpoint(self.current_epoch + 1, self.current_step)
# Final evaluation
self.eval(phase="dev")
self.eval(phase="test")
self._finetune_end_event(run_states)
def eval(self, phase="dev"):
self._init_if_necessary()
self._eval_start_event(phase)
with fluid.program_guard(self.test_program):
test_reader = self.data_reader.data_generator(
batch_size=self.config.batch_size, phase=phase)
run_states = self._run(
test_reader, phase=phase, program_compiled=self.test_program)
self._eval_end_event(phase, run_states)
def _run(self, reader, phase, do_eval=False, program_compiled=None):
if program_compiled is None:
program_compiled = self.main_program_compiled
feed_list = self.get_feed_list(phase=phase)
data_feeder = fluid.DataFeeder(feed_list=feed_list, place=self.place)
fetch_list = self.get_fetch_list(phase=phase)
global_run_states = []
period_run_states = []
for run_step, batch in enumerate(reader(), start=1):
step_run_state = RunState(len(fetch_list))
step_run_state.run_step = 1
num_batch_examples = len(batch)
fetch_result = self.exe.run(
program_compiled,
feed=data_feeder.feed(batch),
fetch_list=fetch_list)
for index, result in enumerate(fetch_result):
step_run_state.run_results[index] = result
step_run_state.run_examples += num_batch_examples
step_run_state.update()
period_run_states += [step_run_state]
if phase == "train":
self.current_step += 1
if self.current_step % self.config.log_interval == 0:
self._log_interval_event(period_run_states)
global_run_states += period_run_states
period_run_states = []
if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
self._save_ckpt_interval_event()
if do_eval and self.current_step % self.config.eval_interval == 0:
self._eval_interval_event()
self._run_step_event(phase, step_run_state)
global_run_states += period_run_states
return global_run_states
def predict(self, data, load_best_model=True):
self._init_if_necessary(load_best_model=load_best_model)
with fluid.program_guard(self.inference_program):
inference_reader = self.data_reader.data_generator(
batch_size=self.config.batch_size, phase='predict', data=data)
for run_state in self._run(
inference_reader,
phase='predict',
program_compiled=self.inference_program):
yield run_state.run_results
class ClassifierTask(BasicTask):
def __init__(self,
data_reader,
feature,
num_classes,
feed_list,
startup_program=None,
config=None,
hidden_units=None):
main_program = feature.block.program
super(ClassifierTask, self).__init__(
data_reader=data_reader,
main_program=main_program,
feed_list=feed_list,
startup_program=startup_program,
config=config)
self.feature = feature
self.num_classes = num_classes
self.hidden_units = hidden_units
self.best_accuracy = -1
def _build_net(self):
cls_feats = self.feature
if self.hidden_units is not None:
for n_hidden in self.hidden_units:
cls_feats = fluid.layers.fc(
input=cls_feats, size=n_hidden, act="relu")
logits = fluid.layers.fc( logits = fluid.layers.fc(
input=cls_feats, input=cls_feats,
size=num_classes, size=self.num_classes,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
name="cls_out_w", name="cls_out_w",
initializer=fluid.initializer.TruncatedNormal(scale=0.02)), initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
...@@ -97,56 +344,111 @@ def create_text_cls_task(feature, num_classes, hidden_units=None): ...@@ -97,56 +344,111 @@ def create_text_cls_task(feature, num_classes, hidden_units=None):
name="cls_out_b", initializer=fluid.initializer.Constant(0.)), name="cls_out_b", initializer=fluid.initializer.Constant(0.)),
act="softmax") act="softmax")
inference_program = fluid.default_main_program().clone(for_test=True) return logits
label = fluid.layers.data(name="label", dtype="int64", shape=[1])
ce_loss = fluid.layers.cross_entropy(input=logits, label=label) def _add_label(self):
loss = fluid.layers.mean(x=ce_loss) self.label = fluid.layers.data(name="label", dtype="int64", shape=[1])
num_example = fluid.layers.create_tensor(dtype='int64') def _add_loss(self):
accuracy = fluid.layers.accuracy( ce_loss = fluid.layers.cross_entropy(
input=logits, label=label, total=num_example) input=self.output, label=self.label)
self.loss = fluid.layers.mean(x=ce_loss)
graph_var_dict = {
"loss": loss, def _add_metrics(self):
"accuracy": accuracy, self.accuracy = fluid.layers.accuracy(
"num_example": num_example, input=self.output, label=self.label)
"label": label, self.metrics.append(self.accuracy)
"probs": logits
} def _init_end_event(self):
with self.log_writer.mode("train") as logw:
task = Task( self.train_loss_scalar = logw.scalar(tag="Loss [train]")
"text_classification", self.train_acc_scalar = logw.scalar(tag="Accuracy [train]")
graph_var_dict, with self.log_writer.mode("evaluate") as logw:
fluid.default_main_program(), self.eval_loss_scalar = logw.scalar(tag="Loss [eval]")
fluid.default_startup_program(), self.eval_acc_scalar = logw.scalar(tag="Accuracy [eval]")
inference_program=inference_program)
def _calculate_metrics(self, run_states):
return task loss_sum = acc_sum = run_examples = 0
run_step = run_time_used = 0
for run_state in run_states:
def create_img_cls_task(feature, num_classes, hidden_units=None): run_examples += run_state.run_examples
""" run_step += run_state.run_step
Create the transfer learning task for image classification. loss_sum += np.mean(
Args: run_state.run_results[-1]) * run_state.run_examples
feature: acc_sum += np.mean(
run_state.run_results[0]) * run_state.run_examples
Return:
Task run_time_used = time.time() - run_states[0].run_time_begin
avg_loss = loss_sum / run_examples
Raise: avg_acc = acc_sum / run_examples
None run_speed = run_step / run_time_used
"""
program = feature.block.program return avg_loss, avg_acc, run_speed
with fluid.program_guard(program):
cls_feats = feature def _log_interval_event(self, run_states):
# append fully connected layer according to hidden_units avg_loss, avg_acc, run_speed = self._calculate_metrics(run_states)
if hidden_units is not None: self.train_loss_scalar.add_record(self.current_step, avg_loss)
for n_hidden in hidden_units: self.train_acc_scalar.add_record(self.current_step, avg_acc)
cls_feats = fluid.layers.fc(input=cls_feats, size=n_hidden) logger.info("step %d: loss=%.5f acc=%.5f [step/sec: %.2f]" %
(self.current_step, avg_loss, avg_acc, run_speed))
probs = fluid.layers.fc(
def _eval_end_event(self, phase, run_states):
eval_loss, eval_acc, run_speed = self._calculate_metrics(run_states)
logger.info(
"[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]"
% (phase, eval_loss, eval_acc, run_speed))
if phase in ["dev", "val"] and eval_acc > self.best_accuracy:
self.eval_loss_scalar.add_record(self.current_step, eval_loss)
self.eval_acc_scalar.add_record(self.current_step, eval_acc)
self.best_accuracy = eval_acc
model_saved_dir = os.path.join(self.config.checkpoint_dir,
"best_model")
logger.info("best model saved to %s [best accuracy=%.5f]" %
(model_saved_dir, self.best_accuracy))
save_result = fluid.io.save_persistables(
executor=self.exe,
dirname=model_saved_dir,
main_program=self.main_program)
ImageClassifierTask = ClassifierTask
class TextClassifierTask(ClassifierTask):
def __init__(self,
data_reader,
feature,
num_classes,
feed_list,
startup_program=None,
config=None,
hidden_units=None):
main_program = feature.block.program
super(TextClassifierTask, self).__init__(
data_reader=data_reader,
feature=feature,
num_classes=num_classes,
feed_list=feed_list,
startup_program=startup_program,
config=config,
hidden_units=hidden_units)
def _build_net(self):
cls_feats = fluid.layers.dropout(
x=self.feature,
dropout_prob=0.1,
dropout_implementation="upscale_in_train")
if self.hidden_units is not None:
for n_hidden in self.hidden_units:
cls_feats = fluid.layers.fc(
input=cls_feats, size=n_hidden, act="relu")
logits = fluid.layers.fc(
input=cls_feats, input=cls_feats,
size=num_classes, size=self.num_classes,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
name="cls_out_w", name="cls_out_w",
initializer=fluid.initializer.TruncatedNormal(scale=0.02)), initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
...@@ -154,41 +456,39 @@ def create_img_cls_task(feature, num_classes, hidden_units=None): ...@@ -154,41 +456,39 @@ def create_img_cls_task(feature, num_classes, hidden_units=None):
name="cls_out_b", initializer=fluid.initializer.Constant(0.)), name="cls_out_b", initializer=fluid.initializer.Constant(0.)),
act="softmax") act="softmax")
inference_program = fluid.default_main_program().clone(for_test=True) return logits
label = fluid.layers.data(name="label", dtype="int64", shape=[1])
ce_loss = fluid.layers.cross_entropy(input=probs, label=label) class SequenceLabelTask(BasicTask):
loss = fluid.layers.mean(x=ce_loss) def __init__(
self,
num_example = fluid.layers.create_tensor(dtype='int64') feature,
accuracy = fluid.layers.accuracy( max_seq_len,
input=probs, label=label, total=num_example) num_classes,
data_reader,
graph_var_dict = { feed_list,
"loss": loss, startup_program=None,
"probs": probs, config=None,
"accuracy": accuracy, ):
"num_example": num_example,
"label": label, main_program = feature.block.program
"probs": probs
} super(SequenceLabelTask, self).__init__(
data_reader=data_reader,
task = Task( main_program=main_program,
"image_classification", feed_list=feed_list,
graph_var_dict, startup_program=startup_program,
fluid.default_main_program(), config=config)
fluid.default_startup_program(),
inference_program=inference_program) self.feature = feature
self.max_seq_len = max_seq_len
return task self.num_classes = num_classes
self.best_f1 = -1
def create_seq_label_task(feature, max_seq_len, num_classes): def _build_net(self):
program = feature.block.program self.logits = fluid.layers.fc(
with fluid.program_guard(program): input=self.feature,
logits = fluid.layers.fc( size=self.num_classes,
input=feature,
size=num_classes,
num_flatten_dims=2, num_flatten_dims=2,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
name="cls_seq_label_out_w", name="cls_seq_label_out_w",
...@@ -197,37 +497,89 @@ def create_seq_label_task(feature, max_seq_len, num_classes): ...@@ -197,37 +497,89 @@ def create_seq_label_task(feature, max_seq_len, num_classes):
name="cls_seq_label_out_b", name="cls_seq_label_out_b",
initializer=fluid.initializer.Constant(0.))) initializer=fluid.initializer.Constant(0.)))
ret_infers = fluid.layers.reshape( logits = self.logits
x=fluid.layers.argmax(logits, axis=2), shape=[-1, 1])
logits = fluid.layers.flatten(logits, axis=2) logits = fluid.layers.flatten(logits, axis=2)
logits = fluid.layers.softmax(logits) logits = fluid.layers.softmax(logits)
self.num_labels = logits.shape[1]
inference_program = fluid.default_main_program().clone(for_test=True) return logits
seq_len = fluid.layers.data(name="seq_len", shape=[1], dtype='int64') def _add_label(self):
label = fluid.layers.data( self.label = fluid.layers.data(
name="label", shape=[max_seq_len, 1], dtype='int64') name="label", shape=[self.max_seq_len, 1], dtype='int64')
ret_labels = fluid.layers.reshape(x=label, shape=[-1, 1])
def _add_loss(self):
labels = fluid.layers.flatten(label, axis=2) labels = fluid.layers.flatten(self.label, axis=2)
ce_loss = fluid.layers.cross_entropy(input=logits, label=labels) ce_loss = fluid.layers.cross_entropy(input=self.output, label=labels)
loss = fluid.layers.mean(x=ce_loss) self.loss = fluid.layers.mean(x=ce_loss)
graph_var_dict = { def _add_metrics(self):
"loss": loss, self.ret_labels = fluid.layers.reshape(x=self.label, shape=[-1, 1])
"probs": logits, self.ret_infers = fluid.layers.reshape(
"labels": ret_labels, x=fluid.layers.argmax(self.logits, axis=2), shape=[-1, 1])
"infers": ret_infers, self.seq_len = fluid.layers.data(
"seq_len": seq_len, name="seq_len", shape=[1], dtype='int64')
"label": label self.seq_len = fluid.layers.assign(self.seq_len)
} self.metrics += [self.ret_labels, self.ret_infers, self.seq_len]
task = Task( def _init_end_event(self):
"sequence_labeling", with self.log_writer.mode("train") as logw:
graph_var_dict, self.train_loss_scalar = logw.scalar(tag="Loss [train]")
fluid.default_main_program(), with self.log_writer.mode("evaluate") as logw:
fluid.default_startup_program(), self.eval_f1_scalar = logw.scalar(tag="F1 [eval]")
inference_program=inference_program) self.eval_precision_scalar = logw.scalar(tag="Precision [eval]")
self.eval_recall_scalar = logw.scalar(tag="Recall [eval]")
return task
def _calculate_metrics(self, run_states):
total_infer = total_label = total_correct = loss_sum = 0
run_step = run_time_used = run_examples = 0
for run_state in run_states:
loss_sum += np.mean(run_state.run_results[-1])
np_labels = run_state.run_results[0]
np_infers = run_state.run_results[1]
np_lens = run_state.run_results[2]
label_num, infer_num, correct_num = chunk_eval(
np_labels, np_infers, np_lens, self.num_labels,
self.device_count)
total_infer += infer_num
total_label += label_num
total_correct += correct_num
run_examples += run_state.run_examples
run_step += run_state.run_step
run_time_used = time.time() - run_states[0].run_time_begin
run_speed = run_step / run_time_used
avg_loss = loss_sum / run_examples
precision, recall, f1 = calculate_f1(total_label, total_infer,
total_correct)
return precision, recall, f1, avg_loss, run_speed
def _log_interval_event(self, run_states):
precision, recall, f1, avg_loss, run_speed = self._calculate_metrics(
run_states)
self.train_loss_scalar.add_record(self.current_step, avg_loss)
logger.info("step %d: loss=%.5f [step/sec: %.2f]" %
(self.current_step, avg_loss, run_speed))
def _eval_end_event(self, phase, run_states):
precision, recall, f1, avg_loss, run_speed = self._calculate_metrics(
run_states)
self.eval_f1_scalar.add_record(self.current_step, f1)
self.eval_precision_scalar.add_record(self.current_step, precision)
self.eval_recall_scalar.add_record(self.current_step, recall)
logger.info("[%s dataset evaluation result] [step/sec: %.2f]" %
(phase, run_speed))
logger.info(
"[%s evaluation] F1-Score=%f, precision=%f, recall=%f [step/sec: %.2f]"
% (phase, f1, precision, recall, run_speed))
if f1 > self.best_f1:
self.best_f1 = f1
model_saved_dir = os.path.join(self.config.checkpoint_dir,
"best_model")
logger.info("best model saved to %s [best F1=%.5f]" %
(model_saved_dir, self.best_f1))
fluid.io.save_persistables(self.exe, dirname=model_saved_dir)
def get_feed_list(self, phase):
if phase in ["train", "dev", "val", "test"]:
return self.feed_list + [self.label.name] + [self.seq_len.name]
return self.feed_list
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册