Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
2620edc3
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2620edc3
编写于
5月 21, 2019
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactoring the task class
上级
5ee30a94
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
593 addition
and
628 deletion
+593
-628
demo/image-classification/img_classifier.py
demo/image-classification/img_classifier.py
+9
-6
demo/image-classification/predict.py
demo/image-classification/predict.py
+29
-28
paddlehub/__init__.py
paddlehub/__init__.py
+4
-5
paddlehub/finetune/checkpoint.py
paddlehub/finetune/checkpoint.py
+15
-5
paddlehub/finetune/evaluate.py
paddlehub/finetune/evaluate.py
+0
-89
paddlehub/finetune/finetune.py
paddlehub/finetune/finetune.py
+0
-312
paddlehub/finetune/strategy.py
paddlehub/finetune/strategy.py
+5
-4
paddlehub/finetune/task.py
paddlehub/finetune/task.py
+531
-179
未找到文件。
demo/image-classification/img_classifier.py
浏览文件 @
2620edc3
...
...
@@ -8,7 +8,7 @@ import numpy as np
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
1
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
default
=
Fals
e
,
help
=
"Whether use GPU for fine-tuning."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
default
=
Tru
e
,
help
=
"Whether use GPU for fine-tuning."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
"paddlehub_finetune_ckpt"
,
help
=
"Path to save log data."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
16
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--module"
,
type
=
str
,
default
=
"resnet50"
,
help
=
"Module used as feature extractor."
)
...
...
@@ -50,11 +50,9 @@ def finetune(args):
dataset
=
dataset
)
feature_map
=
output_dict
[
"feature_map"
]
task
=
hub
.
create_img_cls_task
(
feature
=
feature_map
,
num_classes
=
dataset
.
num_labels
)
img
=
input_dict
[
"image"
]
feed_list
=
[
img
.
name
,
task
.
variable
(
'label'
).
name
]
feed_list
=
[
img
.
name
]
config
=
hub
.
RunConfig
(
use_cuda
=
args
.
use_gpu
,
...
...
@@ -64,8 +62,13 @@ def finetune(args):
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
hub
.
finetune
.
strategy
.
DefaultFinetuneStrategy
())
hub
.
finetune_and_eval
(
task
,
feed_list
=
feed_list
,
data_reader
=
data_reader
,
config
=
config
)
task
=
hub
.
ImageClassifierTask
(
data_reader
=
data_reader
,
feed_list
=
feed_list
,
feature
=
feature_map
,
num_classes
=
dataset
.
num_labels
,
config
=
config
)
task
.
finetune_and_eval
()
if
__name__
==
"__main__"
:
...
...
demo/image-classification/predict.py
浏览文件 @
2620edc3
...
...
@@ -9,6 +9,7 @@ import numpy as np
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
default
=
False
,
help
=
"Whether use GPU for predict."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
"paddlehub_finetune_ckpt"
,
help
=
"Path to save log data."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
16
,
help
=
"Total examples' number in batch for training."
)
parser
.
add_argument
(
"--module"
,
type
=
str
,
default
=
"resnet50"
,
help
=
"Module used as a feature extractor."
)
parser
.
add_argument
(
"--dataset"
,
type
=
str
,
default
=
"flowers"
,
help
=
"Dataset to finetune."
)
# yapf: enable.
...
...
@@ -24,6 +25,8 @@ module_map = {
def
predict
(
args
):
module
=
hub
.
Module
(
name
=
args
.
module
)
input_dict
,
output_dict
,
program
=
module
.
context
(
trainable
=
True
)
if
args
.
dataset
.
lower
()
==
"flowers"
:
dataset
=
hub
.
dataset
.
Flowers
()
...
...
@@ -38,45 +41,43 @@ def predict(args):
else
:
raise
ValueError
(
"%s dataset is not defined"
%
args
.
dataset
)
label_map
=
dataset
.
label_dict
()
num_labels
=
len
(
label_map
)
module
=
hub
.
Module
(
name
=
args
.
module
)
input_dict
,
output_dict
,
program
=
module
.
context
()
data_reader
=
hub
.
reader
.
ImageClassificationReader
(
image_width
=
module
.
get_expected_image_width
(),
image_height
=
module
.
get_expected_image_height
(),
images_mean
=
module
.
get_pretrained_images_mean
(),
images_std
=
module
.
get_pretrained_images_std
(),
dataset
=
None
)
dataset
=
dataset
)
img
=
input_dict
[
"image"
]
feature_map
=
output_dict
[
"feature_map"
]
task
=
hub
.
create_img_cls_task
(
feature
=
feature_map
,
num_classes
=
num_labels
)
img
=
input_dict
[
"image"
]
feed_list
=
[
img
.
name
]
with
fluid
.
program_guard
(
task
.
inference_program
()):
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
pretrained_model_dir
=
os
.
path
.
join
(
args
.
checkpoint_dir
,
"best_model"
)
if
not
os
.
path
.
exists
(
pretrained_model_dir
):
hub
.
logger
.
error
(
"pretrained model dir %s didn't exist"
%
pretrained_model_dir
)
exit
(
1
)
fluid
.
io
.
load_persistables
(
exe
,
pretrained_model_dir
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
data
=
[
"test/test_img_roses.jpg"
,
"test/test_img_daisy.jpg"
]
config
=
hub
.
RunConfig
(
use_cuda
=
args
.
use_gpu
,
batch_size
=
args
.
batch_size
,
enable_memory_optim
=
False
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
hub
.
finetune
.
strategy
.
DefaultFinetuneStrategy
())
predict_reader
=
data_reader
.
data_generator
(
phase
=
"predict"
,
batch_size
=
1
,
data
=
data
)
for
index
,
batch
in
enumerate
(
predict_reader
()):
result
,
=
exe
.
run
(
feed
=
feeder
.
feed
(
batch
),
fetch_list
=
[
task
.
variable
(
'probs'
)])
predict_result
=
label_map
[
np
.
argsort
(
result
[
0
])[::
-
1
][
0
]]
print
(
"input %i is %s, and the predict result is %s"
%
(
index
,
data
[
index
],
predict_result
))
task
=
hub
.
ClassifierTask
(
data_reader
=
data_reader
,
feed_list
=
feed_list
,
feature
=
feature_map
,
num_classes
=
dataset
.
num_labels
,
config
=
config
)
data
=
[
"./test/test_img_daisy.jpg"
,
"./test/test_img_roses.jpg"
]
label_map
=
dataset
.
label_dict
()
for
result
in
task
.
predict
(
data
=
data
):
result
=
np
.
argmax
(
result
,
axis
=
2
)
index
=
0
for
batch
in
result
:
for
predict_result
in
batch
:
index
+=
1
predict_result
=
label_map
[
predict_result
]
print
(
"input %i is %s, and the predict result is %s"
%
(
index
,
data
[
index
-
1
],
predict_result
))
if
__name__
==
"__main__"
:
...
...
paddlehub/__init__.py
浏览文件 @
2620edc3
...
...
@@ -38,11 +38,10 @@ from .module.manager import default_module_manager
from
.io.type
import
DataType
from
.finetune.task
import
Task
from
.finetune.task
import
create_seq_label_task
from
.finetune.task
import
create_text_cls_task
from
.finetune.task
import
create_img_cls_task
from
.finetune.finetune
import
finetune_and_eval
from
.finetune.task
import
ClassifierTask
from
.finetune.task
import
TextClassifierTask
from
.finetune.task
import
ImageClassifierTask
from
.finetune.task
import
SequenceLabelTask
from
.finetune.config
import
RunConfig
from
.finetune.strategy
import
AdamWeightDecayStrategy
from
.finetune.strategy
import
DefaultStrategy
...
...
paddlehub/finetune/checkpoint.py
浏览文件 @
2620edc3
...
...
@@ -26,7 +26,11 @@ from paddlehub.common.logger import logger
CKPT_FILE_NAME
=
"ckpt.meta"
def
load_checkpoint
(
checkpoint_dir
,
exe
):
def
load_checkpoint
(
checkpoint_dir
,
exe
,
main_program
=
fluid
.
default_main_program
(),
startup_program
=
fluid
.
default_startup_program
()):
ckpt_meta_path
=
os
.
path
.
join
(
checkpoint_dir
,
CKPT_FILE_NAME
)
logger
.
info
(
"Try loading checkpoint from {}"
.
format
(
ckpt_meta_path
))
if
os
.
path
.
exists
(
ckpt_meta_path
):
...
...
@@ -34,7 +38,7 @@ def load_checkpoint(checkpoint_dir, exe):
with
open
(
ckpt_meta_path
,
"rb"
)
as
f
:
ckpt
.
ParseFromString
(
f
.
read
())
fluid
.
io
.
load_persistables
(
exe
,
ckpt
.
latest_model_dir
)
fluid
.
io
.
load_persistables
(
exe
,
ckpt
.
latest_model_dir
,
main_program
)
logger
.
info
(
"PaddleHub model checkpoint loaded. current_epoch={}, "
"global_step={}"
.
format
(
ckpt
.
current_epoch
,
...
...
@@ -47,18 +51,24 @@ def load_checkpoint(checkpoint_dir, exe):
logger
.
info
(
"PaddleHub model checkpoint not found, start training from scratch..."
)
exe
.
run
(
fluid
.
default_startup_program
()
)
exe
.
run
(
startup_program
)
return
current_epoch
,
global_step
def
save_checkpoint
(
checkpoint_dir
,
current_epoch
,
global_step
,
exe
):
def
save_checkpoint
(
checkpoint_dir
,
current_epoch
,
global_step
,
exe
,
main_program
=
fluid
.
default_main_program
()):
ckpt_meta_path
=
os
.
path
.
join
(
checkpoint_dir
,
CKPT_FILE_NAME
)
ckpt
=
checkpoint_pb2
.
CheckPoint
()
model_saved_dir
=
os
.
path
.
join
(
checkpoint_dir
,
"step_%d"
%
global_step
)
logger
.
info
(
"Saving model checkpoint to {}"
.
format
(
model_saved_dir
))
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
)
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
,
main_program
=
main_program
)
ckpt
.
current_epoch
=
current_epoch
ckpt
.
global_step
=
global_step
...
...
paddlehub/finetune/evaluate.py
浏览文件 @
2620edc3
...
...
@@ -25,95 +25,6 @@ from paddlehub.common.logger import logger
import
paddlehub
as
hub
def
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
None
):
logger
.
info
(
"Evaluation on {} dataset start"
.
format
(
phase
))
test_program
=
task
.
test_program
()
main_program
=
task
.
main_program
()
loss
=
task
.
variable
(
"loss"
)
accuracy
=
task
.
variable
(
"accuracy"
)
batch_size
=
config
.
batch_size
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
exe
=
fluid
.
Executor
(
place
=
place
)
with
fluid
.
program_guard
(
test_program
):
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
num_eval_examples
=
acc_sum
=
loss_sum
=
0
test_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
phase
)
eval_time_begin
=
time
.
time
()
eval_step
=
0
for
batch
in
test_reader
():
num_batch_examples
=
len
(
batch
)
eval_step
+=
1
loss_v
,
accuracy_v
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
[
loss
.
name
,
accuracy
.
name
])
num_eval_examples
+=
num_batch_examples
if
num_eval_examples
%
10000
==
0
:
logger
.
info
(
"{} examples evaluated."
.
format
(
num_eval_examples
))
acc_sum
+=
accuracy_v
*
num_batch_examples
loss_sum
+=
loss_v
*
num_batch_examples
eval_time_used
=
time
.
time
()
-
eval_time_begin
avg_loss
=
loss_sum
/
num_eval_examples
avg_acc
=
acc_sum
/
num_eval_examples
eval_speed
=
eval_step
/
eval_time_used
logger
.
info
(
"[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]"
%
(
phase
,
avg_loss
,
avg_acc
,
eval_speed
))
return
avg_loss
,
avg_acc
,
eval_speed
def
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
None
):
fetch_list
=
[
task
.
variable
(
"labels"
).
name
,
task
.
variable
(
"infers"
).
name
,
task
.
variable
(
"seq_len"
).
name
,
task
.
variable
(
"loss"
).
name
]
logger
.
info
(
"Evaluation on {} dataset start"
.
format
(
phase
))
test_program
=
task
.
test_program
()
batch_size
=
config
.
batch_size
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
exe
=
fluid
.
Executor
(
place
=
place
)
# calculate the num of label from probs variable shape
num_labels
=
task
.
variable
(
"probs"
).
shape
[
1
]
with
fluid
.
program_guard
(
test_program
):
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
num_eval_examples
=
acc_sum
=
loss_sum
=
0
test_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
phase
)
eval_time_begin
=
time
.
time
()
eval_step
=
0
total_label
,
total_infer
,
total_correct
=
0.0
,
0.0
,
0.0
for
batch
in
test_reader
():
num_batch_examples
=
len
(
batch
)
eval_step
+=
1
np_labels
,
np_infers
,
np_lens
,
_
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
fetch_list
)
label_num
,
infer_num
,
correct_num
=
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
num_labels
,
dev_count
)
total_infer
+=
infer_num
total_label
+=
label_num
total_correct
+=
correct_num
precision
,
recall
,
f1
=
calculate_f1
(
total_label
,
total_infer
,
total_correct
)
eval_time_used
=
time
.
time
()
-
eval_time_begin
eval_speed
=
eval_step
/
eval_time_used
logger
.
info
(
"[%s evaluation] F1-Score=%f, precision=%f, recall=%f [step/sec: %.2f]"
%
(
phase
,
f1
,
precision
,
recall
,
eval_speed
))
return
f1
,
precision
,
recall
# Sequence label evaluation functions
def
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
tag_num
,
dev_count
=
1
):
def
extract_bio_chunk
(
seq
):
...
...
paddlehub/finetune/finetune.py
已删除
100644 → 0
浏览文件 @
5ee30a94
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
from
visualdl
import
LogWriter
from
paddlehub.common.logger
import
logger
from
paddlehub.common.utils
import
mkdir
from
paddlehub.finetune.config
import
RunConfig
from
paddlehub.finetune.strategy
import
AdamWeightDecayStrategy
,
DefaultStrategy
from
paddlehub.finetune.checkpoint
import
load_checkpoint
,
save_checkpoint
from
paddlehub.finetune.evaluate
import
evaluate_cls_task
,
evaluate_seq_label_task
import
paddlehub
as
hub
def
_do_memory_optimization
(
task
,
config
):
if
config
.
enable_memory_optim
:
logger
.
info
(
"Memory optimization start..."
)
task_var_name
=
task
.
metric_variable_names
()
logger
.
info
(
"Skip memory optimization on variables: {}"
.
format
(
task_var_name
))
optimize_time_begin
=
time
.
time
()
fluid
.
memory_optimize
(
input_program
=
fluid
.
default_main_program
(),
# skip memory optimization on task metric variables
skip_opt_set
=
task_var_name
)
time_used
=
time
.
time
()
-
optimize_time_begin
logger
.
info
(
"Memory optimization done! Time elapsed %f sec"
%
time_used
)
# lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
# program=task.main_program(), batch_size=config.batch_size)
# logger.info("Theoretical memory usage in training: %.2f - %.2f %s" %
# (lower_mem, upper_mem, unit)),
def
_finetune_seq_label_task
(
task
,
data_reader
,
feed_list
,
config
=
None
,
do_eval
=
False
):
"""
Finetune sequence labeling task, evaluate metric is F1, precision and recall
"""
main_program
=
task
.
main_program
()
startup_program
=
task
.
startup_program
()
loss
=
task
.
variable
(
"loss"
)
seq_len
=
task
.
variable
(
"seq_len"
)
num_epoch
=
config
.
num_epoch
batch_size
=
config
.
batch_size
log_writer
=
LogWriter
(
os
.
path
.
join
(
config
.
checkpoint_dir
,
"vdllog"
),
sync_cycle
=
1
)
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
with
fluid
.
program_guard
(
main_program
,
startup_program
):
exe
=
fluid
.
Executor
(
place
=
place
)
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
# Select strategy
if
isinstance
(
config
.
strategy
,
hub
.
AdamWeightDecayStrategy
):
scheduled_lr
=
config
.
strategy
.
execute
(
loss
,
main_program
,
data_reader
,
config
)
elif
isinstance
(
config
.
strategy
,
hub
.
DefaultStrategy
):
config
.
strategy
.
execute
(
loss
)
#TODO: add more finetune strategy
_do_memory_optimization
(
task
,
config
)
# Try to restore model training checkpoint
current_epoch
,
global_step
=
load_checkpoint
(
config
.
checkpoint_dir
,
exe
)
best_eval_f1
=
0.0
train_time_used
=
0
logger
.
info
(
"PaddleHub finetune start"
)
exe
.
run
(
fluid
.
default_startup_program
())
# add visualdl scalar
with
log_writer
.
mode
(
"train"
)
as
logw
:
train_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [train]"
)
with
log_writer
.
mode
(
"evaluate"
)
as
logw
:
eval_f1_scalar
=
logw
.
scalar
(
tag
=
"F1 [eval]"
)
eval_precision_scalar
=
logw
.
scalar
(
tag
=
"Precision [eval]"
)
eval_recall_scalar
=
logw
.
scalar
(
tag
=
"Recall [eval]"
)
# Finetune loop
for
epoch
in
range
(
current_epoch
,
num_epoch
+
1
):
train_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'train'
)
num_trained_examples
=
loss_sum
=
0
for
batch
in
train_reader
():
num_batch_examples
=
len
(
batch
)
train_time_begin
=
time
.
time
()
loss_v
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
[
loss
.
name
])
train_time_used
+=
time
.
time
()
-
train_time_begin
global_step
+=
1
num_trained_examples
+=
num_batch_examples
loss_sum
+=
loss_v
[
0
]
*
num_batch_examples
# log fintune status
if
global_step
%
config
.
log_interval
==
0
:
avg_loss
=
loss_sum
/
num_trained_examples
speed
=
config
.
log_interval
/
train_time_used
logger
.
info
(
"step %d: loss=%.5f [step/sec: %.2f]"
%
(
global_step
,
avg_loss
,
speed
))
train_loss_scalar
.
add_record
(
global_step
,
avg_loss
)
train_time_used
=
0
num_trained_examples
=
0
loss_sum
=
0
if
config
.
save_ckpt_interval
and
global_step
%
config
.
save_ckpt_interval
==
0
:
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore correct dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
epoch
,
global_step
=
global_step
,
exe
=
exe
)
if
do_eval
and
global_step
%
config
.
eval_interval
==
0
:
f1
,
precision
,
recall
=
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"dev"
,
config
=
config
)
eval_f1_scalar
.
add_record
(
global_step
,
f1
)
eval_precision_scalar
.
add_record
(
global_step
,
precision
)
eval_recall_scalar
.
add_record
(
global_step
,
recall
)
if
f1
>
best_eval_f1
:
best_eval_f1
=
f1
model_saved_dir
=
os
.
path
.
join
(
config
.
checkpoint_dir
,
"best_model"
)
logger
.
info
(
"best model saved to %s [best F1=%.5f]"
%
(
model_saved_dir
,
best_eval_f1
))
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
)
# NOTE: current saved checkpoint machanism is not completed, it can't
# resotre dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
num_epoch
+
1
,
global_step
=
global_step
,
exe
=
exe
)
# Final evaluation
if
do_eval
:
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"dev"
,
config
=
config
)
evaluate_seq_label_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
config
)
logger
.
info
(
"PaddleHub finetune finished."
)
def
_finetune_cls_task
(
task
,
data_reader
,
feed_list
,
config
=
None
,
do_eval
=
False
):
main_program
=
task
.
main_program
()
startup_program
=
task
.
startup_program
()
loss
=
task
.
variable
(
"loss"
)
accuracy
=
task
.
variable
(
"accuracy"
)
num_epoch
=
config
.
num_epoch
batch_size
=
config
.
batch_size
log_writer
=
LogWriter
(
os
.
path
.
join
(
config
.
checkpoint_dir
,
"vdllog"
),
sync_cycle
=
1
)
place
,
dev_count
=
hub
.
common
.
get_running_device_info
(
config
)
with
fluid
.
program_guard
(
main_program
,
startup_program
):
exe
=
fluid
.
Executor
(
place
=
place
)
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
# select strategy
if
isinstance
(
config
.
strategy
,
hub
.
AdamWeightDecayStrategy
):
scheduled_lr
=
config
.
strategy
.
execute
(
loss
,
main_program
,
data_reader
,
config
)
elif
isinstance
(
config
.
strategy
,
hub
.
DefaultStrategy
):
config
.
strategy
.
execute
(
loss
)
#TODO: add more finetune strategy
_do_memory_optimization
(
task
,
config
)
# Try to restore model training checkpoint
current_epoch
,
global_step
=
load_checkpoint
(
config
.
checkpoint_dir
,
exe
)
best_eval_acc
=
0.0
train_time_used
=
0
logger
.
info
(
"PaddleHub finetune start"
)
# add visualdl scalar
with
log_writer
.
mode
(
"train"
)
as
logw
:
train_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [train]"
)
train_acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [train]"
)
with
log_writer
.
mode
(
"evaluate"
)
as
logw
:
eval_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [eval]"
)
eval_acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [eval]"
)
exe
.
run
(
fluid
.
default_startup_program
())
# Finetune loop
for
epoch
in
range
(
current_epoch
,
num_epoch
+
1
):
train_reader
=
data_reader
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'train'
)
num_trained_examples
=
acc_sum
=
loss_sum
=
0
for
batch
in
train_reader
():
num_batch_examples
=
len
(
batch
)
train_time_begin
=
time
.
time
()
loss_v
,
accuracy_v
=
exe
.
run
(
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
[
loss
.
name
,
accuracy
.
name
],
return_numpy
=
False
)
loss_v
=
np
.
array
(
loss_v
)
accuracy_v
=
np
.
array
(
accuracy_v
)
train_time_used
+=
time
.
time
()
-
train_time_begin
global_step
+=
1
num_trained_examples
+=
num_batch_examples
acc_sum
+=
accuracy_v
*
num_batch_examples
loss_sum
+=
loss_v
*
num_batch_examples
# log fintune status
if
global_step
%
config
.
log_interval
==
0
:
avg_loss
=
loss_sum
/
num_trained_examples
avg_acc
=
acc_sum
/
num_trained_examples
speed
=
config
.
log_interval
/
train_time_used
logger
.
info
(
"step %d: loss=%.5f acc=%.5f [step/sec: %.2f]"
%
(
global_step
,
avg_loss
,
avg_acc
,
speed
))
# record visualdl log
train_loss_scalar
.
add_record
(
global_step
,
avg_loss
)
train_acc_scalar
.
add_record
(
global_step
,
avg_acc
)
train_time_used
=
0
num_trained_examples
=
acc_sum
=
loss_sum
=
0
if
config
.
save_ckpt_interval
and
global_step
%
config
.
save_ckpt_interval
==
0
:
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
epoch
,
global_step
=
global_step
,
exe
=
exe
)
if
do_eval
and
global_step
%
config
.
eval_interval
==
0
:
eval_loss
,
eval_acc
,
eval_perf
=
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"val"
,
config
=
config
)
eval_loss_scalar
.
add_record
(
global_step
,
eval_loss
)
eval_acc_scalar
.
add_record
(
global_step
,
eval_acc
)
if
eval_acc
>
best_eval_acc
:
best_eval_acc
=
eval_acc
model_saved_dir
=
os
.
path
.
join
(
config
.
checkpoint_dir
,
"best_model"
)
logger
.
info
(
"best model saved to %s [best accuracy=%.5f]"
%
(
model_saved_dir
,
best_eval_acc
))
fluid
.
io
.
save_persistables
(
exe
,
dirname
=
model_saved_dir
)
# NOTE: current saved checkpoint machanism is not completed, it can't
# resotre dataset training status
save_checkpoint
(
checkpoint_dir
=
config
.
checkpoint_dir
,
current_epoch
=
num_epoch
+
1
,
global_step
=
global_step
,
exe
=
exe
)
# Final evaluation
if
do_eval
:
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"dev"
,
config
=
config
)
evaluate_cls_task
(
task
,
data_reader
,
feed_list
,
phase
=
"test"
,
config
=
config
)
logger
.
info
(
"PaddleHub finetune finished."
)
def
finetune_and_eval
(
task
,
data_reader
,
feed_list
,
config
=
None
):
if
config
is
None
:
config
=
RunConfig
()
if
not
os
.
path
.
exists
(
config
.
checkpoint_dir
):
mkdir
(
config
.
checkpoint_dir
)
if
task
.
task_type
==
"sequence_labeling"
:
_finetune_seq_label_task
(
task
,
data_reader
,
feed_list
,
config
,
do_eval
=
True
)
elif
task
.
task_type
==
"image_classification"
or
task
.
task_type
==
"text_classification"
:
_finetune_cls_task
(
task
,
data_reader
,
feed_list
,
config
,
do_eval
=
True
)
paddlehub/finetune/strategy.py
浏览文件 @
2620edc3
...
...
@@ -74,7 +74,7 @@ class DefaultStrategy(object):
self
.
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
self
.
learning_rate
)
def
execute
(
self
,
loss
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
if
self
.
optimizer
is
not
None
:
self
.
optimizer
.
minimize
(
loss
)
else
:
...
...
@@ -114,7 +114,8 @@ class AdamWeightDecayStrategy(DefaultStrategy):
def
weight_decay
(
self
):
return
self
.
_weight_decay
def
execute
(
self
,
loss
,
main_program
,
data_reader
,
config
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
main_program
=
loss
.
block
.
program
# calculate wamrup step
dev_count
=
self
.
_get_dev_count
(
config
)
data_reader
.
data_generator
(
...
...
@@ -158,7 +159,7 @@ class DefaultFinetuneStrategy(DefaultStrategy):
self
.
_optimizer_name
=
optimizer_name
self
.
regularization_coeff
=
regularization_coeff
def
execute
(
self
,
loss
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
# get pretrained parameters
program
=
loss
.
block
.
program
global_block
=
program
.
global_block
()
...
...
@@ -187,7 +188,7 @@ class L2SPFinetuneStrategy(DefaultStrategy):
self
.
_optimizer_name
=
optimizer_name
self
.
regularization_coeff
=
regularization_coeff
def
execute
(
self
,
loss
):
def
execute
(
self
,
loss
,
data_reader
,
config
):
# get pretrained parameters
program
=
loss
.
block
.
program
global_block
=
program
.
global_block
()
...
...
paddlehub/finetune/task.py
浏览文件 @
2620edc3
...
...
@@ -23,73 +23,320 @@ import multiprocessing
import
numpy
as
np
import
paddle.fluid
as
fluid
class
Task
(
object
):
"""
A simple transfer learning task definition,
including Paddle's main_program, startup_program and inference program
"""
from
visualdl
import
LogWriter
import
paddlehub
as
hub
from
paddlehub.common.utils
import
mkdir
from
paddlehub.common.logger
import
logger
from
paddlehub.finetune.checkpoint
import
load_checkpoint
,
save_checkpoint
from
paddlehub.finetune.evaluate
import
chunk_eval
,
calculate_f1
from
paddlehub.finetune.config
import
RunConfig
__all__
=
[
"ClassifierTask"
,
"ImageClassifierTask"
,
"TextClassifierTask"
,
"SequenceLabelTask"
]
class
RunState
(
object
):
def
__init__
(
self
,
length
):
self
.
run_time_begin
=
time
.
time
()
self
.
run_step
=
0
self
.
run_examples
=
0
self
.
run_results
=
[
0
]
*
length
self
.
run_time_used
=
0
self
.
run_speed
=
0.0
def
__add__
(
self
,
other
):
self
.
run_step
+=
other
.
run_step
self
.
run_examples
+=
other
.
run_examples
for
index
in
range
(
len
(
self
.
run_results
)):
self
.
run_results
[
index
]
+=
other
.
run_results
[
index
]
return
self
def
update
(
self
):
self
.
run_time_used
=
time
.
time
()
-
self
.
run_time_begin
self
.
run_speed
=
self
.
run_step
/
self
.
run_time_used
return
self
class
BasicTask
(
object
):
def
__init__
(
self
,
task_type
,
graph_var_dict
,
main_program
,
startup_program
,
inference_program
=
None
):
self
.
task_type
=
task_type
self
.
graph_var_dict
=
graph_var_dict
self
.
_main_program
=
main_program
self
.
_startup_program
=
startup_program
self
.
_inference_program
=
inference_program
self
.
_test_program
=
main_program
.
clone
(
for_test
=
True
)
def
variable
(
self
,
var_name
):
if
var_name
in
self
.
graph_var_dict
:
return
self
.
graph_var_dict
[
var_name
]
raise
KeyError
(
"var_name {} not in task graph"
.
format
(
var_name
))
def
main_program
(
self
):
return
self
.
_main_program
def
startup_program
(
self
):
return
self
.
_startup_program
def
inference_program
(
self
):
return
self
.
_inference_program
def
test_program
(
self
):
return
self
.
_test_program
def
metric_variable_names
(
self
):
metric_variable_names
=
[]
for
var_name
in
self
.
graph_var_dict
:
metric_variable_names
.
append
(
var_name
)
return
metric_variable_names
def
create_text_cls_task
(
feature
,
num_classes
,
hidden_units
=
None
):
"""
Append a multi-layer perceptron classifier for binary classification base
on input feature
"""
program
=
feature
.
block
.
program
with
fluid
.
program_guard
(
program
):
cls_feats
=
fluid
.
layers
.
dropout
(
x
=
feature
,
dropout_prob
=
0.1
,
dropout_implementation
=
"upscale_in_train"
)
# append fully connected layer according to hidden_units
if
hidden_units
is
not
None
:
for
n_hidden
in
hidden_units
:
cls_feats
=
fluid
.
layers
.
fc
(
input
=
cls_feats
,
size
=
n_hidden
)
feed_list
,
data_reader
,
main_program
=
None
,
startup_program
=
None
,
config
=
None
):
self
.
data_reader
=
data_reader
self
.
main_program
=
main_program
if
main_program
else
fluid
.
default_main_program
(
)
self
.
startup_program
=
startup_program
if
startup_program
else
fluid
.
default_startup_program
(
)
self
.
config
=
config
if
config
else
RunConfig
()
self
.
place
,
self
.
device_count
=
hub
.
common
.
get_running_device_info
(
self
.
config
)
self
.
exe
=
fluid
.
Executor
(
place
=
self
.
place
)
self
.
feed_list
=
feed_list
self
.
metrics
=
[]
self
.
is_inititalized
=
False
self
.
current_step
=
0
self
.
current_epoch
=
0
def
_init_start_event
(
self
):
pass
def
_init_end_event
(
self
):
pass
def
_eval_start_event
(
self
,
phase
):
logger
.
info
(
"Evaluation on {} dataset start"
.
format
(
phase
))
def
_eval_end_event
(
self
,
phase
,
run_state
):
logger
.
info
(
"[%s dataset evaluation result] [step/sec: %.2f]"
%
(
phase
,
run_state
.
run_speed
))
def
_log_interval_event
(
self
,
run_state
):
logger
.
info
(
"step %d: [step/sec: %.2f]"
%
(
self
.
current_step
,
run_state
.
run_speed
))
def
_save_ckpt_interval_event
(
self
):
self
.
save_checkpoint
(
self
.
current_epoch
,
self
.
current_step
)
def
_eval_interval_event
(
self
):
self
.
eval
(
phase
=
"dev"
)
def
_run_step_event
(
self
,
phase
,
run_state
):
if
phase
==
"predict"
:
yield
run_state
.
run_results
def
_finetune_start_event
(
self
):
logger
.
info
(
"PaddleHub finetune start"
)
def
_finetune_end_event
(
self
,
run_state
):
logger
.
info
(
"PaddleHub finetune finished."
)
def
_build_net
(
self
):
raise
NotImplementedError
def
_add_loss
(
self
):
raise
NotImplementedError
def
_add_label
(
self
):
raise
NotImplementedError
def
_add_metrics
(
self
):
raise
NotImplementedError
def
_init_if_necessary
(
self
,
load_best_model
=
False
):
if
not
self
.
is_inititalized
:
self
.
_init_start_event
()
with
fluid
.
program_guard
(
self
.
main_program
):
self
.
output
=
self
.
_build_net
()
self
.
inference_program
=
self
.
main_program
.
clone
(
for_test
=
True
)
self
.
_add_label
()
self
.
_add_loss
()
self
.
_add_metrics
()
self
.
test_program
=
self
.
main_program
.
clone
(
for_test
=
True
)
self
.
config
.
strategy
.
execute
(
self
.
loss
,
self
.
data_reader
,
self
.
config
)
self
.
loss
.
persistable
=
True
for
metrics
in
self
.
metrics
:
metrics
.
persistable
=
True
self
.
output
.
persistable
=
True
self
.
build_strategy
=
fluid
.
BuildStrategy
()
if
self
.
config
.
enable_memory_optim
:
self
.
build_strategy
.
memory_optimize
=
True
else
:
self
.
build_strategy
.
memory_optimize
=
False
self
.
main_program_compiled
=
fluid
.
CompiledProgram
(
self
.
main_program
).
with_data_parallel
(
loss_name
=
self
.
loss
.
name
,
build_strategy
=
self
.
build_strategy
)
self
.
inference_program_compiled
=
fluid
.
CompiledProgram
(
self
.
inference_program
).
with_data_parallel
(
share_vars_from
=
self
.
main_program_compiled
,
build_strategy
=
self
.
build_strategy
)
self
.
test_program_compiled
=
fluid
.
CompiledProgram
(
self
.
test_program
).
with_data_parallel
(
share_vars_from
=
self
.
main_program_compiled
,
build_strategy
=
self
.
build_strategy
)
self
.
load_checkpoint
(
load_best_model
=
load_best_model
)
if
not
os
.
path
.
exists
(
self
.
config
.
checkpoint_dir
):
mkdir
(
self
.
config
.
checkpoint_dir
)
vdl_log_dir
=
os
.
path
.
join
(
self
.
config
.
checkpoint_dir
,
"vdllog"
)
self
.
log_writer
=
LogWriter
(
vdl_log_dir
,
sync_cycle
=
1
)
self
.
is_inititalized
=
True
self
.
_init_end_event
()
# NOTE: current saved checkpoint machanism is not completed,
# it can't restore dataset training status
def
save_checkpoint
(
self
,
epoch
,
step
):
save_checkpoint
(
checkpoint_dir
=
self
.
config
.
checkpoint_dir
,
current_epoch
=
self
.
current_epoch
,
global_step
=
self
.
current_step
,
exe
=
self
.
exe
,
main_program
=
self
.
main_program
)
def
load_checkpoint
(
self
,
load_best_model
=
False
):
self
.
current_epoch
,
self
.
current_step
=
load_checkpoint
(
self
.
config
.
checkpoint_dir
,
self
.
exe
,
main_program
=
self
.
main_program
)
if
load_best_model
:
model_saved_dir
=
os
.
path
.
join
(
self
.
config
.
checkpoint_dir
,
"best_model"
)
if
os
.
path
.
exists
(
model_saved_dir
):
fluid
.
io
.
load_persistables
(
executor
=
self
.
exe
,
dirname
=
model_saved_dir
,
main_program
=
self
.
main_program
)
def
get_feed_list
(
self
,
phase
):
if
phase
in
[
"train"
,
"dev"
,
"val"
,
"test"
]:
return
self
.
feed_list
+
[
self
.
label
.
name
]
return
self
.
feed_list
def
get_fetch_list
(
self
,
phase
):
metrics_name
=
[
metric
.
name
for
metric
in
self
.
metrics
]
if
phase
in
[
"train"
,
"dev"
,
"val"
,
"test"
]:
return
metrics_name
+
[
self
.
loss
.
name
]
return
[
self
.
output
.
name
]
def
finetune_and_eval
(
self
):
self
.
finetune
(
do_eval
=
True
)
def
finetune
(
self
,
do_eval
=
False
):
self
.
_init_if_necessary
()
self
.
_finetune_start_event
()
run_states
=
[]
if
self
.
current_epoch
<=
self
.
config
.
num_epoch
:
# Start to finetune
with
fluid
.
program_guard
(
self
.
main_program
):
while
self
.
current_epoch
<=
self
.
config
.
num_epoch
:
train_reader
=
self
.
data_reader
.
data_generator
(
batch_size
=
self
.
config
.
batch_size
,
phase
=
'train'
)
run_states
=
self
.
_run
(
train_reader
,
phase
=
"train"
,
do_eval
=
do_eval
,
program_compiled
=
self
.
main_program_compiled
)
self
.
current_epoch
+=
1
# Save checkpoint after finetune
self
.
save_checkpoint
(
self
.
current_epoch
+
1
,
self
.
current_step
)
# Final evaluation
self
.
eval
(
phase
=
"dev"
)
self
.
eval
(
phase
=
"test"
)
self
.
_finetune_end_event
(
run_states
)
def
eval
(
self
,
phase
=
"dev"
):
self
.
_init_if_necessary
()
self
.
_eval_start_event
(
phase
)
with
fluid
.
program_guard
(
self
.
test_program
):
test_reader
=
self
.
data_reader
.
data_generator
(
batch_size
=
self
.
config
.
batch_size
,
phase
=
phase
)
run_states
=
self
.
_run
(
test_reader
,
phase
=
phase
,
program_compiled
=
self
.
test_program
)
self
.
_eval_end_event
(
phase
,
run_states
)
def
_run
(
self
,
reader
,
phase
,
do_eval
=
False
,
program_compiled
=
None
):
if
program_compiled
is
None
:
program_compiled
=
self
.
main_program_compiled
feed_list
=
self
.
get_feed_list
(
phase
=
phase
)
data_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
self
.
place
)
fetch_list
=
self
.
get_fetch_list
(
phase
=
phase
)
global_run_states
=
[]
period_run_states
=
[]
for
run_step
,
batch
in
enumerate
(
reader
(),
start
=
1
):
step_run_state
=
RunState
(
len
(
fetch_list
))
step_run_state
.
run_step
=
1
num_batch_examples
=
len
(
batch
)
fetch_result
=
self
.
exe
.
run
(
program_compiled
,
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
fetch_list
)
for
index
,
result
in
enumerate
(
fetch_result
):
step_run_state
.
run_results
[
index
]
=
result
step_run_state
.
run_examples
+=
num_batch_examples
step_run_state
.
update
()
period_run_states
+=
[
step_run_state
]
if
phase
==
"train"
:
self
.
current_step
+=
1
if
self
.
current_step
%
self
.
config
.
log_interval
==
0
:
self
.
_log_interval_event
(
period_run_states
)
global_run_states
+=
period_run_states
period_run_states
=
[]
if
self
.
config
.
save_ckpt_interval
and
self
.
current_step
%
self
.
config
.
save_ckpt_interval
==
0
:
self
.
_save_ckpt_interval_event
()
if
do_eval
and
self
.
current_step
%
self
.
config
.
eval_interval
==
0
:
self
.
_eval_interval_event
()
self
.
_run_step_event
(
phase
,
step_run_state
)
global_run_states
+=
period_run_states
return
global_run_states
def
predict
(
self
,
data
,
load_best_model
=
True
):
self
.
_init_if_necessary
(
load_best_model
=
load_best_model
)
with
fluid
.
program_guard
(
self
.
inference_program
):
inference_reader
=
self
.
data_reader
.
data_generator
(
batch_size
=
self
.
config
.
batch_size
,
phase
=
'predict'
,
data
=
data
)
for
run_state
in
self
.
_run
(
inference_reader
,
phase
=
'predict'
,
program_compiled
=
self
.
inference_program
):
yield
run_state
.
run_results
class
ClassifierTask
(
BasicTask
):
def
__init__
(
self
,
data_reader
,
feature
,
num_classes
,
feed_list
,
startup_program
=
None
,
config
=
None
,
hidden_units
=
None
):
main_program
=
feature
.
block
.
program
super
(
ClassifierTask
,
self
).
__init__
(
data_reader
=
data_reader
,
main_program
=
main_program
,
feed_list
=
feed_list
,
startup_program
=
startup_program
,
config
=
config
)
self
.
feature
=
feature
self
.
num_classes
=
num_classes
self
.
hidden_units
=
hidden_units
self
.
best_accuracy
=
-
1
def
_build_net
(
self
):
cls_feats
=
self
.
feature
if
self
.
hidden_units
is
not
None
:
for
n_hidden
in
self
.
hidden_units
:
cls_feats
=
fluid
.
layers
.
fc
(
input
=
cls_feats
,
size
=
n_hidden
,
act
=
"relu"
)
logits
=
fluid
.
layers
.
fc
(
input
=
cls_feats
,
size
=
num_classes
,
size
=
self
.
num_classes
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls_out_w"
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
0.02
)),
...
...
@@ -97,56 +344,111 @@ def create_text_cls_task(feature, num_classes, hidden_units=None):
name
=
"cls_out_b"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.
)),
act
=
"softmax"
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
dtype
=
"int64"
,
shape
=
[
1
])
ce_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
logits
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
num_example
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
logits
,
label
=
label
,
total
=
num_example
)
graph_var_dict
=
{
"loss"
:
loss
,
"accuracy"
:
accuracy
,
"num_example"
:
num_example
,
"label"
:
label
,
"probs"
:
logits
}
task
=
Task
(
"text_classification"
,
graph_var_dict
,
fluid
.
default_main_program
(),
fluid
.
default_startup_program
(),
inference_program
=
inference_program
)
return
task
def
create_img_cls_task
(
feature
,
num_classes
,
hidden_units
=
None
):
"""
Create the transfer learning task for image classification.
Args:
feature:
Return:
Task
Raise:
None
"""
program
=
feature
.
block
.
program
with
fluid
.
program_guard
(
program
):
cls_feats
=
feature
# append fully connected layer according to hidden_units
if
hidden_units
is
not
None
:
for
n_hidden
in
hidden_units
:
cls_feats
=
fluid
.
layers
.
fc
(
input
=
cls_feats
,
size
=
n_hidden
)
probs
=
fluid
.
layers
.
fc
(
return
logits
def
_add_label
(
self
):
self
.
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
dtype
=
"int64"
,
shape
=
[
1
])
def
_add_loss
(
self
):
ce_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
output
,
label
=
self
.
label
)
self
.
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
def
_add_metrics
(
self
):
self
.
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
self
.
output
,
label
=
self
.
label
)
self
.
metrics
.
append
(
self
.
accuracy
)
def
_init_end_event
(
self
):
with
self
.
log_writer
.
mode
(
"train"
)
as
logw
:
self
.
train_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [train]"
)
self
.
train_acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [train]"
)
with
self
.
log_writer
.
mode
(
"evaluate"
)
as
logw
:
self
.
eval_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [eval]"
)
self
.
eval_acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [eval]"
)
def
_calculate_metrics
(
self
,
run_states
):
loss_sum
=
acc_sum
=
run_examples
=
0
run_step
=
run_time_used
=
0
for
run_state
in
run_states
:
run_examples
+=
run_state
.
run_examples
run_step
+=
run_state
.
run_step
loss_sum
+=
np
.
mean
(
run_state
.
run_results
[
-
1
])
*
run_state
.
run_examples
acc_sum
+=
np
.
mean
(
run_state
.
run_results
[
0
])
*
run_state
.
run_examples
run_time_used
=
time
.
time
()
-
run_states
[
0
].
run_time_begin
avg_loss
=
loss_sum
/
run_examples
avg_acc
=
acc_sum
/
run_examples
run_speed
=
run_step
/
run_time_used
return
avg_loss
,
avg_acc
,
run_speed
def
_log_interval_event
(
self
,
run_states
):
avg_loss
,
avg_acc
,
run_speed
=
self
.
_calculate_metrics
(
run_states
)
self
.
train_loss_scalar
.
add_record
(
self
.
current_step
,
avg_loss
)
self
.
train_acc_scalar
.
add_record
(
self
.
current_step
,
avg_acc
)
logger
.
info
(
"step %d: loss=%.5f acc=%.5f [step/sec: %.2f]"
%
(
self
.
current_step
,
avg_loss
,
avg_acc
,
run_speed
))
def
_eval_end_event
(
self
,
phase
,
run_states
):
eval_loss
,
eval_acc
,
run_speed
=
self
.
_calculate_metrics
(
run_states
)
logger
.
info
(
"[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]"
%
(
phase
,
eval_loss
,
eval_acc
,
run_speed
))
if
phase
in
[
"dev"
,
"val"
]
and
eval_acc
>
self
.
best_accuracy
:
self
.
eval_loss_scalar
.
add_record
(
self
.
current_step
,
eval_loss
)
self
.
eval_acc_scalar
.
add_record
(
self
.
current_step
,
eval_acc
)
self
.
best_accuracy
=
eval_acc
model_saved_dir
=
os
.
path
.
join
(
self
.
config
.
checkpoint_dir
,
"best_model"
)
logger
.
info
(
"best model saved to %s [best accuracy=%.5f]"
%
(
model_saved_dir
,
self
.
best_accuracy
))
save_result
=
fluid
.
io
.
save_persistables
(
executor
=
self
.
exe
,
dirname
=
model_saved_dir
,
main_program
=
self
.
main_program
)
ImageClassifierTask
=
ClassifierTask
class
TextClassifierTask
(
ClassifierTask
):
def
__init__
(
self
,
data_reader
,
feature
,
num_classes
,
feed_list
,
startup_program
=
None
,
config
=
None
,
hidden_units
=
None
):
main_program
=
feature
.
block
.
program
super
(
TextClassifierTask
,
self
).
__init__
(
data_reader
=
data_reader
,
feature
=
feature
,
num_classes
=
num_classes
,
feed_list
=
feed_list
,
startup_program
=
startup_program
,
config
=
config
,
hidden_units
=
hidden_units
)
def
_build_net
(
self
):
cls_feats
=
fluid
.
layers
.
dropout
(
x
=
self
.
feature
,
dropout_prob
=
0.1
,
dropout_implementation
=
"upscale_in_train"
)
if
self
.
hidden_units
is
not
None
:
for
n_hidden
in
self
.
hidden_units
:
cls_feats
=
fluid
.
layers
.
fc
(
input
=
cls_feats
,
size
=
n_hidden
,
act
=
"relu"
)
logits
=
fluid
.
layers
.
fc
(
input
=
cls_feats
,
size
=
num_classes
,
size
=
self
.
num_classes
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls_out_w"
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
0.02
)),
...
...
@@ -154,41 +456,39 @@ def create_img_cls_task(feature, num_classes, hidden_units=None):
name
=
"cls_out_b"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.
)),
act
=
"softmax"
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
dtype
=
"int64"
,
shape
=
[
1
])
ce_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
probs
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
num_example
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
label
,
total
=
num_example
)
graph_var_dict
=
{
"loss"
:
loss
,
"probs"
:
probs
,
"accuracy"
:
accuracy
,
"num_example"
:
num_example
,
"label"
:
label
,
"probs"
:
probs
}
task
=
Task
(
"image_classification"
,
graph_var_dict
,
fluid
.
default_main_program
(),
fluid
.
default_startup_program
(),
inference_program
=
inference_program
)
return
task
def
create_seq_label_task
(
feature
,
max_seq_len
,
num_classes
):
program
=
feature
.
block
.
program
with
fluid
.
program_guard
(
program
):
logits
=
fluid
.
layers
.
fc
(
input
=
feature
,
size
=
num_classes
,
return
logits
class
SequenceLabelTask
(
BasicTask
):
def
__init__
(
self
,
feature
,
max_seq_len
,
num_classes
,
data_reader
,
feed_list
,
startup_program
=
None
,
config
=
None
,
):
main_program
=
feature
.
block
.
program
super
(
SequenceLabelTask
,
self
).
__init__
(
data_reader
=
data_reader
,
main_program
=
main_program
,
feed_list
=
feed_list
,
startup_program
=
startup_program
,
config
=
config
)
self
.
feature
=
feature
self
.
max_seq_len
=
max_seq_len
self
.
num_classes
=
num_classes
self
.
best_f1
=
-
1
def
_build_net
(
self
):
self
.
logits
=
fluid
.
layers
.
fc
(
input
=
self
.
feature
,
size
=
self
.
num_classes
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls_seq_label_out_w"
,
...
...
@@ -197,37 +497,89 @@ def create_seq_label_task(feature, max_seq_len, num_classes):
name
=
"cls_seq_label_out_b"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.
)))
ret_infers
=
fluid
.
layers
.
reshape
(
x
=
fluid
.
layers
.
argmax
(
logits
,
axis
=
2
),
shape
=
[
-
1
,
1
])
logits
=
self
.
logits
logits
=
fluid
.
layers
.
flatten
(
logits
,
axis
=
2
)
logits
=
fluid
.
layers
.
softmax
(
logits
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
seq_len
=
fluid
.
layers
.
data
(
name
=
"seq_len"
,
shape
=
[
1
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
max_seq_len
,
1
],
dtype
=
'int64'
)
ret_labels
=
fluid
.
layers
.
reshape
(
x
=
label
,
shape
=
[
-
1
,
1
])
labels
=
fluid
.
layers
.
flatten
(
label
,
axis
=
2
)
ce_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
logits
,
label
=
labels
)
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
graph_var_dict
=
{
"loss"
:
loss
,
"probs"
:
logits
,
"labels"
:
ret_labels
,
"infers"
:
ret_infers
,
"seq_len"
:
seq_len
,
"label"
:
label
}
task
=
Task
(
"sequence_labeling"
,
graph_var_dict
,
fluid
.
default_main_program
(),
fluid
.
default_startup_program
(),
inference_program
=
inference_program
)
return
task
self
.
num_labels
=
logits
.
shape
[
1
]
return
logits
def
_add_label
(
self
):
self
.
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
self
.
max_seq_len
,
1
],
dtype
=
'int64'
)
def
_add_loss
(
self
):
labels
=
fluid
.
layers
.
flatten
(
self
.
label
,
axis
=
2
)
ce_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
output
,
label
=
labels
)
self
.
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
def
_add_metrics
(
self
):
self
.
ret_labels
=
fluid
.
layers
.
reshape
(
x
=
self
.
label
,
shape
=
[
-
1
,
1
])
self
.
ret_infers
=
fluid
.
layers
.
reshape
(
x
=
fluid
.
layers
.
argmax
(
self
.
logits
,
axis
=
2
),
shape
=
[
-
1
,
1
])
self
.
seq_len
=
fluid
.
layers
.
data
(
name
=
"seq_len"
,
shape
=
[
1
],
dtype
=
'int64'
)
self
.
seq_len
=
fluid
.
layers
.
assign
(
self
.
seq_len
)
self
.
metrics
+=
[
self
.
ret_labels
,
self
.
ret_infers
,
self
.
seq_len
]
def
_init_end_event
(
self
):
with
self
.
log_writer
.
mode
(
"train"
)
as
logw
:
self
.
train_loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [train]"
)
with
self
.
log_writer
.
mode
(
"evaluate"
)
as
logw
:
self
.
eval_f1_scalar
=
logw
.
scalar
(
tag
=
"F1 [eval]"
)
self
.
eval_precision_scalar
=
logw
.
scalar
(
tag
=
"Precision [eval]"
)
self
.
eval_recall_scalar
=
logw
.
scalar
(
tag
=
"Recall [eval]"
)
def
_calculate_metrics
(
self
,
run_states
):
total_infer
=
total_label
=
total_correct
=
loss_sum
=
0
run_step
=
run_time_used
=
run_examples
=
0
for
run_state
in
run_states
:
loss_sum
+=
np
.
mean
(
run_state
.
run_results
[
-
1
])
np_labels
=
run_state
.
run_results
[
0
]
np_infers
=
run_state
.
run_results
[
1
]
np_lens
=
run_state
.
run_results
[
2
]
label_num
,
infer_num
,
correct_num
=
chunk_eval
(
np_labels
,
np_infers
,
np_lens
,
self
.
num_labels
,
self
.
device_count
)
total_infer
+=
infer_num
total_label
+=
label_num
total_correct
+=
correct_num
run_examples
+=
run_state
.
run_examples
run_step
+=
run_state
.
run_step
run_time_used
=
time
.
time
()
-
run_states
[
0
].
run_time_begin
run_speed
=
run_step
/
run_time_used
avg_loss
=
loss_sum
/
run_examples
precision
,
recall
,
f1
=
calculate_f1
(
total_label
,
total_infer
,
total_correct
)
return
precision
,
recall
,
f1
,
avg_loss
,
run_speed
def
_log_interval_event
(
self
,
run_states
):
precision
,
recall
,
f1
,
avg_loss
,
run_speed
=
self
.
_calculate_metrics
(
run_states
)
self
.
train_loss_scalar
.
add_record
(
self
.
current_step
,
avg_loss
)
logger
.
info
(
"step %d: loss=%.5f [step/sec: %.2f]"
%
(
self
.
current_step
,
avg_loss
,
run_speed
))
def
_eval_end_event
(
self
,
phase
,
run_states
):
precision
,
recall
,
f1
,
avg_loss
,
run_speed
=
self
.
_calculate_metrics
(
run_states
)
self
.
eval_f1_scalar
.
add_record
(
self
.
current_step
,
f1
)
self
.
eval_precision_scalar
.
add_record
(
self
.
current_step
,
precision
)
self
.
eval_recall_scalar
.
add_record
(
self
.
current_step
,
recall
)
logger
.
info
(
"[%s dataset evaluation result] [step/sec: %.2f]"
%
(
phase
,
run_speed
))
logger
.
info
(
"[%s evaluation] F1-Score=%f, precision=%f, recall=%f [step/sec: %.2f]"
%
(
phase
,
f1
,
precision
,
recall
,
run_speed
))
if
f1
>
self
.
best_f1
:
self
.
best_f1
=
f1
model_saved_dir
=
os
.
path
.
join
(
self
.
config
.
checkpoint_dir
,
"best_model"
)
logger
.
info
(
"best model saved to %s [best F1=%.5f]"
%
(
model_saved_dir
,
self
.
best_f1
))
fluid
.
io
.
save_persistables
(
self
.
exe
,
dirname
=
model_saved_dir
)
def
get_feed_list
(
self
,
phase
):
if
phase
in
[
"train"
,
"dev"
,
"val"
,
"test"
]:
return
self
.
feed_list
+
[
self
.
label
.
name
]
+
[
self
.
seq_len
.
name
]
return
self
.
feed_list
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录