@@ -227,3 +229,5 @@ We welcome you to contribute code to PaddleHub, and thank you for your feedback.
...
@@ -227,3 +229,5 @@ We welcome you to contribute code to PaddleHub, and thank you for your feedback.
* Many thanks to [paopjian](https://github.com/paopjian) for correcting the wrong website address [#1424](https://github.com/PaddlePaddle/PaddleHub/issues/1424)
* Many thanks to [paopjian](https://github.com/paopjian) for correcting the wrong website address [#1424](https://github.com/PaddlePaddle/PaddleHub/issues/1424)
* Many thanks to [Wgm-Inspur](https://github.com/Wgm-Inspur) for correcting the demo errors in readme, and updating the RNN illustration in the text classification and sequence labeling demo
* Many thanks to [Wgm-Inspur](https://github.com/Wgm-Inspur) for correcting the demo errors in readme, and updating the RNN illustration in the text classification and sequence labeling demo
* Many thanks to [zl1271](https://github.com/zl1271) for fixing serving docs typo
* Many thanks to [zl1271](https://github.com/zl1271) for fixing serving docs typo
* Many thanks to [AK391](https://github.com/AK391) for adding the webdemo of UGATIT and deoldify models in Hugging Face spaces
* Many thanks to [itegel](https://github.com/itegel) for fixing quick start docs typo
**Deoldify Huggingface Web Demo**: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See demo: [](https://huggingface.co/spaces/akhaliq/deoldify)
### Image Generation
### Image Generation
- Including portrait cartoonization, street scene cartoonization, and style transfer.
- Including portrait cartoonization, street scene cartoonization, and style transfer.
- Many thanks to CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)、CopyRight@[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)for the pre-trained models.
- Many thanks to CopyRight@[PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN)、CopyRight@[AnimeGAN](https://github.com/TachibanaYoshino/AnimeGANv2)for the pre-trained models.
**UGATIT Selfie2anime Huggingface Web Demo**: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See demo: [](https://huggingface.co/spaces/akhaliq/U-GAT-IT-selfie2anime)
### Object Detection
### Object Detection
- Pedestrian detection, vehicle detection, and more industrial-grade ultra-large-scale pretrained models are provided.
- Pedestrian detection, vehicle detection, and more industrial-grade ultra-large-scale pretrained models are provided.
DCSCN是基于Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network设计的轻量化超分辨模型。该模型使用残差结构和跳连的方式构建网络来提取局部和全局特征,同时使用并行1*1的卷积网络学习细节特征提升模型性能。该模型提供的超分倍数为2倍。
- DCSCN是基于Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network设计的轻量化超分辨模型。该模型使用残差结构和跳连的方式构建网络来提取局部和全局特征,同时使用并行1*1的卷积网络学习细节特征提升模型性能。该模型提供的超分倍数为2倍。
falsr_a是基于Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search设计的轻量化超分辨模型。该模型使用多目标方法处理超分问题,同时使用基于混合控制器的弹性搜索策略来提升模型性能。该模型提供的超分倍数为2倍。
- falsr_a是基于Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search设计的轻量化超分辨模型。该模型使用多目标方法处理超分问题,同时使用基于混合控制器的弹性搜索策略来提升模型性能。该模型提供的超分倍数为2倍。
falsr_b是基于Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search设计的轻量化超分辨模型。falsr_b较falsr_a更轻量化。该模型使用多目标方法处理超分问题,同时使用基于混合控制器的弹性搜索策略来提升模型性能。该模型提供的超分倍数为2倍。
- falsr_b是基于Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search设计的轻量化超分辨模型。该模型使用多目标方法处理超分问题,同时使用基于混合控制器的弹性搜索策略来提升模型性能。该模型提供的超分倍数为2倍。
- AlexNet是图像分类中的经典模型。模型由Alex Krizhevsky于2012年提出,并在2012年ILSVRC比赛中夺得冠军。该PaddleHub Module结构为AlexNet,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
hub run fix_resnext101_32x48d_wsl_imagenet --input_path "/PATH/TO/IMAGE"
| :--- | :---: |
```
|类别|图像-图像分类|
|网络|ResNeXt|
|数据集|ImageNet-2012|
|是否支持Fine-tuning|否|
|模型大小|3.1GB|
|最新更新日期|-|
|数据指标|-|
## API
```python
## 一、模型基本信息
defget_expected_image_width()
```
返回预处理的图片宽度,也就是224。
```python
defget_expected_image_height()
```
返回预处理的图片高度,也就是224。
- ### 模型介绍
```python
- ResNeXt 是由 UC San Diego 和 Facebook AI 研究所于2017年提出的图像分类模型,模型沿袭了 VGG/ResNets 的堆叠思想,并采用 split-transform-merge 策略来增加网络的分支数。该 PaddleHub Module 在包含数十亿张社交媒体图片的数据集上进行弱监督训练,并使用ImageNet-2012数据集finetune,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者 Python 接口进行预测。
- GoogleNet是图像分类中的经典模型。由Christian Szegedy等人在2014年提出,并获得了2014年ILSVRC竞赛冠军。该PaddleHub Module结构为GoogleNet,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- MobileNet V2是Mark Sandler, Andrew Howard等人在2018年提出的一个图像分类模型,该系列模型(MobileNet)是为移动和嵌入式设备提出的高效模型,在模型参数较少的情况下仍然保持了较高的分类准确率。该PaddleHub Module基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- MobileNet V2是Mark Sandler, Andrew Howard等人在2018年提出的一个图像分类模型,该系列模型(MobileNet)是为移动和嵌入式设备提出的高效模型,在模型参数较少的情况下仍然保持了较高的分类准确率。该PaddleHub Module基于ImageNet-2012数据集并采用PaddleClas提供的SSLD蒸馏方法训练得到,接受输入图片大小为224 x 224 x 3,支持finetune,也可以直接通过命令行或者Python接口进行预测。
- MobileNetV3是Google在2019年发布的新模型,作者通过结合NAS与NetAdapt进行搜索得到该网络结构,提供了Large和Small两个版本,分别适用于对资源不同要求的情况。对比于MobileNetV2,新的模型在速度和精度方面均有提升。该PaddleHubModule的模型结构为MobileNetV3 Large,基于ImageNet-2012数据集并采用PaddleClas提供的SSLD蒸馏方法训练得到,接受输入图片大小为224 x 224 x 3,支持finetune,也可以直接通过命令行或者Python接口进行预测。
- MobileNetV3是Google在2019年发布的新模型,作者通过结合NAS与NetAdapt进行搜索得到该网络结构,提供了Large和Small两个版本,分别适用于对资源不同要求的情况。对比于MobileNetV2,新的模型在速度和精度方面均有提升。该PaddleHubModule的模型结构为MobileNetV3 Small,基于ImageNet-2012数据集并采用PaddleClas提供的SSLD蒸馏方法训练得到,接受输入图片大小为224 x 224 x 3,支持finetune,也可以直接通过命令行或者Python接口进行预测。
- ResNet系列模型是图像分类领域的重要模型之一,模型中提出的残差单元有效地解决了深度网络训练困难的问题,通过增加模型的深度提升了模型的准确率,ResNet-vd 其实就是 ResNet-D,是ResNet 原始结构的变种。该PaddleHub Module结构为ResNet_vd,基于ImageNet-2012数据集训练得到,接受输入图片大小为224 x 224 x 3,支持finetune,也可以直接通过命令行或者Python接口进行预测。
- ResNet系列模型是图像分类领域的重要模型之一,模型中提出的残差单元有效地解决了深度网络训练困难的问题,通过增加模型的深度提升了模型的准确率,ResNet-vd 其实就是 ResNet-D,是ResNet 原始结构的变种。该PaddleHub Module结构为ResNet_vd,使用百度自研的基于10万种类别、4千多万的有标签数据进行训练,接受输入图片大小为224 x 224 x 3,支持finetune。
- ResNet系列模型是图像分类领域的重要模型之一,模型中提出的残差单元有效地解决了深度网络训练困难的问题,通过增加模型的深度提升了模型的准确率。该PaddleHub Module结构为ResNet101,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- ResNet系列模型是图像分类领域的重要模型之一,模型中提出的残差单元有效地解决了深度网络训练困难的问题,通过增加模型的深度提升了模型的准确率。该PaddleHub Module结构为ResNet152,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- ResNet系列模型是图像分类领域的重要模型之一,模型中提出的残差单元有效地解决了深度网络训练困难的问题,通过增加模型的深度提升了模型的准确率。该PaddleHub Module结构为ResNet18,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- ResNet系列模型是图像分类领域的重要模型之一,模型中提出的残差单元有效地解决了深度网络训练困难的问题,通过增加模型的深度提升了模型的准确率。该PaddleHub Module结构为ResNet34,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- ResNet系列模型是图像分类领域的重要模型之一,模型中提出的残差单元有效地解决了深度网络训练困难的问题,通过增加模型的深度提升了模型的准确率。该PaddleHub Module结构为ResNet50,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- Squeeze-and-Excitation Networks是由Momenta在2017年提出的一种图像分类结构。该结构通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。SE_ResNeXt基于ResNeXt模型添加了SE Block,并获得了2017 ILSVR竞赛的冠军。该PaddleHub Module结构为SE_ResNeXt101_32x4d,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- Squeeze-and-Excitation Networks是由Momenta在2017年提出的一种图像分类结构。该结构通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。SE_ResNeXt基于ResNeXt模型添加了SE Block,并获得了2017 ILSVR竞赛的冠军。该PaddleHub Module结构为SE_ResNeXt50_32x4d,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- ShuffleNet V2是由旷视科技在2018年提出的轻量级图像分类模型,该模型通过pointwise group convolution和channel shuffle两种方式,在保持精度的同时大大降低了模型的计算量。该PaddleHub Module结构为ShuffleNet V2,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- VGG是牛津大学计算机视觉组和DeepMind在2014年提出的一种图像分类模型。该系列模型探索了卷积神经网络的深度与其性能之间的关系,通过实验证明了增加网络的深度能够在一定程度上影响网络最终的性能,到目前为止,VGG仍然被许多其他图像任务用作特征提取的BackBone网络。该PaddleHub Module结构为VGG11,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- VGG是牛津大学计算机视觉组和DeepMind在2014年提出的一种图像分类模型。该系列模型探索了卷积神经网络的深度与其性能之间的关系,通过实验证明了增加网络的深度能够在一定程度上影响网络最终的性能,到目前为止,VGG仍然被许多其他图像任务用作特征提取的BackBone网络。该PaddleHub Module结构为VGG13,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- VGG是牛津大学计算机视觉组和DeepMind在2014年提出的一种图像分类模型。该系列模型探索了卷积神经网络的深度与其性能之间的关系,通过实验证明了增加网络的深度能够在一定程度上影响网络最终的性能,到目前为止,VGG仍然被许多其他图像任务用作特征提取的BackBone网络。该PaddleHub Module结构为VGG16,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
- VGG是牛津大学计算机视觉组和DeepMind在2014年提出的一种图像分类模型。该系列模型探索了卷积神经网络的深度与其性能之间的关系,通过实验证明了增加网络的深度能够在一定程度上影响网络最终的性能,到目前为止,VGG仍然被许多其他图像任务用作特征提取的BackBone网络。该PaddleHub Module结构为VGG19,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测。
* data (dict): key,str类型,"image_np_path";value,list类型,每个元素为list类型,[用于病灶分析的影像numpy数组(文件后缀名.npy)路径, 用于肺部分割的影像numpy数组路径],如果仅进行病灶分析不进行肺部分割,可以省略用于肺部分割的影像numpy数组路径
- **返回**
* result (list\[dict\]): 每个元素为对应输入的预测结果。每个预测结果为dict类型:预测结果有以下字段:
* data (dict): key,str类型,"image_np_path";value,list类型,每个元素为list类型,[用于病灶分析的影像numpy数组(文件后缀名.npy)路径, 用于肺部分割的影像numpy数组路径],如果仅进行病灶分析不进行肺部分割,可以省略用于肺部分割的影像numpy数组路径
- **返回**
* result (list\[dict\]): 每个元素为对应输入的预测结果。每个预测结果为dict类型:预测结果有以下字段:
"Tencent AI Lab Embedding Corpus for Chinese Words and Phrases and the vocab size is 8,824,331. For more information, please refer to https://ai.tencent.com/ailab/nlp/zh/embedding.html",
"Tencent AI Lab Embedding Corpus for Chinese Words and Phrases and the vocab size is 2,000,002. For more information, please refer to https://ai.tencent.com/ailab/nlp/zh/embedding.html",
2017 年,Google机器翻译团队在其发表的论文[Attention Is All You Need](https://arxiv.org/abs/1706.03762)中,提出了用于完成机器翻译(Machine Translation)等序列到序列(Seq2Seq)学习任务的一种全新网络结构——Transformer。Tranformer网络完全使用注意力(Attention)机制来实现序列到序列的建模,并且取得了很好的效果。
- 2017 年,Google机器翻译团队在其发表的论文[Attention Is All You Need](https://arxiv.org/abs/1706.03762)中,提出了用于完成机器翻译(Machine Translation)等序列到序列(Seq2Seq)学习任务的一种全新网络结构——Transformer。Tranformer网络完全使用注意力(Attention)机制来实现序列到序列的建模,并且取得了很好的效果。
关于机器翻译的Transformer模型训练方式和详情,可查看[Machine Translation using Transformer](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/machine_translation/transformer)。
- 关于机器翻译的Transformer模型训练方式和详情,可查看[Machine Translation using Transformer](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/machine_translation/transformer)。
2017 年,Google机器翻译团队在其发表的论文[Attention Is All You Need](https://arxiv.org/abs/1706.03762)中,提出了用于完成机器翻译(Machine Translation)等序列到序列(Seq2Seq)学习任务的一种全新网络结构——Transformer。Tranformer网络完全使用注意力(Attention)机制来实现序列到序列的建模,并且取得了很好的效果。
- 2017 年,Google机器翻译团队在其发表的论文[Attention Is All You Need](https://arxiv.org/abs/1706.03762)中,提出了用于完成机器翻译(Machine Translation)等序列到序列(Seq2Seq)学习任务的一种全新网络结构——Transformer。Tranformer网络完全使用注意力(Attention)机制来实现序列到序列的建模,并且取得了很好的效果。
关于机器翻译的Transformer模型训练方式和详情,可查看[Machine Translation using Transformer](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/machine_translation/transformer)。
- 关于机器翻译的Transformer模型训练方式和详情,可查看[Machine Translation using Transformer](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/machine_translation/transformer)。