提交 2355a54f 编写于 作者: S Steffy-zxf

add predefine network usage demo

上级 be550654
......@@ -60,7 +60,7 @@ if __name__ == '__main__':
# Construct transfer learning network
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
token_feature = outputs["sequence_output"]
pooled_output = outputs["pooled_output"]
# Setup feed list for data feeder
# Must feed all the tensor of module need
......@@ -80,15 +80,10 @@ if __name__ == '__main__':
strategy=hub.AdamWeightDecayStrategy())
# Define a classfication finetune task by PaddleHub's API
# network choice: bilstm, bow, cnn, dpcnn, gru, lstm (PaddleHub pre-defined network)
# If you wanna add network after ERNIE/BERT/RoBERTa/ELECTRA module,
# you must use the outputs["sequence_output"] as the token_feature of TextClassifierTask,
# rather than outputs["pooled_output"], and feature is None
cls_task = hub.TextClassifierTask(
data_reader=reader,
token_feature=token_feature,
feature=pooled_output,
feed_list=feed_list,
network=args.network,
num_classes=dataset.num_labels,
config=config)
......
#coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import numpy as np
import os
import time
import paddle
import paddle.fluid as fluid
import paddlehub as hub
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False")
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
parser.add_argument("--network", type=str, default='bilstm', help="Pre-defined network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.")
args = parser.parse_args()
# yapf: enable.
if __name__ == '__main__':
# Load Paddlehub ERNIE Tiny pretrained model
module = hub.Module(name="ernie_tiny")
inputs, outputs, program = module.context(
trainable=True, max_seq_len=args.max_seq_len)
# Download dataset and use accuracy as metrics
# Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC
dataset = hub.dataset.ChnSentiCorp()
# For ernie_tiny, it use sub-word to tokenize chinese sentence
# If not ernie tiny, sp_model_path and word_dict_path should be set None
reader = hub.reader.ClassifyReader(
dataset=dataset,
vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len,
sp_model_path=module.get_spm_path(),
word_dict_path=module.get_word_dict_path())
# Construct transfer learning network
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
token_feature = outputs["sequence_output"]
# Setup feed list for data feeder
# Must feed all the tensor of module need
feed_list = [
inputs["input_ids"].name,
inputs["position_ids"].name,
inputs["segment_ids"].name,
inputs["input_mask"].name,
]
# Setup runing config for PaddleHub Finetune API
config = hub.RunConfig(
use_data_parallel=args.use_data_parallel,
use_cuda=args.use_gpu,
batch_size=args.batch_size,
checkpoint_dir=args.checkpoint_dir,
strategy=hub.AdamWeightDecayStrategy())
# Define a classfication finetune task by PaddleHub's API
# network choice: bilstm, bow, cnn, dpcnn, gru, lstm (PaddleHub pre-defined network)
# If you wanna add network after ERNIE/BERT/RoBERTa/ELECTRA module,
# you must use the outputs["sequence_output"] as the token_feature of TextClassifierTask,
# rather than outputs["pooled_output"], and feature is None
cls_task = hub.TextClassifierTask(
data_reader=reader,
token_feature=token_feature,
feed_list=feed_list,
network=args.network,
num_classes=dataset.num_labels,
config=config)
# Data to be prdicted
data = [["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]]
print(cls_task.predict(data=data, return_result=True))
export FLAGS_eager_delete_tensor_gb=0.0
export CUDA_VISIBLE_DEVICES=0
CKPT_DIR="./ckpt_chnsenticorp"
python -u text_cls.py \
--batch_size=24 \
--use_gpu=True \
--checkpoint_dir=${CKPT_DIR} \
--learning_rate=5e-5 \
--weight_decay=0.01 \
--max_seq_len=128 \
--warmup_proportion=0.1 \
--num_epoch=3 \
--use_data_parallel=True
# The sugguested hyper parameters for difference task
# for ChineseGLUE:
# TNews: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# LCQMC: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# XNLI_zh: batch_size=32, weight_decay=0, num_epoch=2, max_seq_len=128, lr=5e-5
# INEWS: batch_size=4, weight_decay=0, num_epoch=3, max_seq_len=512, lr=5e-5
# DRCD: see demo: reading-comprehension
# CMRC2018: see demo: reading-comprehension
# BQ: batch_size=32, weight_decay=0, num_epoch=2, max_seq_len=100, lr=1e-5
# MSRANER: see demo: sequence-labeling
# THUCNEWS: batch_size=8, weight_decay=0, num_epoch=2, max_seq_len=512, lr=5e-5
# IFLYTEKDATA: batch_size=16, weight_decay=0, num_epoch=5, max_seq_len=256, lr=1e-5
# for other tasks:
# ChnSentiCorp: batch_size=24, weight_decay=0.01, num_epoch=3, max_seq_len=128, lr=5e-5
# NLPCC_DBQA: batch_size=8, weight_decay=0.01, num_epoch=3, max_seq_len=512, lr=2e-5
# LCQMC: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=2e-5
# QQP: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# QNLI: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# SST-2: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# CoLA: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# MRPC: batch_size=32, weight_decay=0.01, num_epoch=3, max_seq_len=128, lr=5e-5
# RTE: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=3e-5
# MNLI: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# Specify the matched/mismatched dev and test dataset with an underscore.
# mnli_m or mnli: dev and test in matched dataset.
# mnli_mm: dev and test in mismatched dataset.
# The difference can be seen in https://www.nyu.edu/projects/bowman/multinli/paper.pdf.
# If you are not sure which one to pick, just use mnli or mnli_m.
# XNLI: batch_size=32, weight_decay=0, num_epoch=3, max_seq_len=128, lr=5e-5
# Specify the language with an underscore like xnli_zh.
# ar- Arabic bg- Bulgarian de- German
# el- Greek en- English es- Spanish
# fr- French hi- Hindi ru- Russian
# sw- Swahili th- Thai tr- Turkish
# ur- Urdu vi- Vietnamese zh- Chinese (Simplified)
export FLAGS_eager_delete_tensor_gb=0.0
export CUDA_VISIBLE_DEVICES=0
CKPT_DIR="./ckpt_chnsenticorp"
CKPT_DIR="./ckpt_chnsenticorp_predefine_net"
python -u text_classifier.py \
python -u text_cls_predefine_net.py \
--batch_size=24 \
--use_gpu=True \
--checkpoint_dir=${CKPT_DIR} \
......
......@@ -3,8 +3,8 @@ export CUDA_VISIBLE_DEVICES=0
CKPT_DIR="./ckpt_chnsenticorp"
python -u predict.py --checkpoint_dir=$CKPT_DIR \
python -u predict.py \
--checkpoint_dir=$CKPT_DIR \
--max_seq_len=128 \
--use_gpu=True \
--batch_size=24 \
--network=bilstm
--batch_size=24
export FLAGS_eager_delete_tensor_gb=0.0
export CUDA_VISIBLE_DEVICES=0
CKPT_DIR="./ckpt_chnsenticorp_predefine_net"
python -u predict_predefine_net.py \
--checkpoint_dir=$CKPT_DIR \
--max_seq_len=128 \
--use_gpu=True \
--batch_size=24 \
--network=bilstm
#coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
import argparse
import ast
import paddlehub as hub
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.")
parser.add_argument("--warmup_proportion", type=float, default=0.1, help="Warmup proportion params for warmup strategy")
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.")
args = parser.parse_args()
# yapf: enable.
if __name__ == '__main__':
# Load Paddlehub ERNIE Tiny pretrained model
module = hub.Module(name="ernie_tiny")
inputs, outputs, program = module.context(
trainable=True, max_seq_len=args.max_seq_len)
# Download dataset and use accuracy as metrics
# Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC
# metric should be acc, f1 or matthews
dataset = hub.dataset.ChnSentiCorp()
metrics_choices = ["acc"]
# For ernie_tiny, it use sub-word to tokenize chinese sentence
# If not ernie tiny, sp_model_path and word_dict_path should be set None
reader = hub.reader.ClassifyReader(
dataset=dataset,
vocab_path=module.get_vocab_path(),
max_seq_len=args.max_seq_len,
sp_model_path=module.get_spm_path(),
word_dict_path=module.get_word_dict_path())
# Construct transfer learning network
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
pooled_output = outputs["pooled_output"]
# Setup feed list for data feeder
# Must feed all the tensor of module need
feed_list = [
inputs["input_ids"].name,
inputs["position_ids"].name,
inputs["segment_ids"].name,
inputs["input_mask"].name,
]
# Select finetune strategy, setup config and finetune
strategy = hub.AdamWeightDecayStrategy(
warmup_proportion=args.warmup_proportion,
weight_decay=args.weight_decay,
learning_rate=args.learning_rate)
# Setup runing config for PaddleHub Finetune API
config = hub.RunConfig(
use_data_parallel=args.use_data_parallel,
use_cuda=args.use_gpu,
num_epoch=args.num_epoch,
batch_size=args.batch_size,
checkpoint_dir=args.checkpoint_dir,
strategy=strategy)
# Define a classfication finetune task by PaddleHub's API
cls_task = hub.TextClassifierTask(
data_reader=reader,
feature=pooled_output,
feed_list=feed_list,
num_classes=dataset.num_labels,
config=config,
metrics_choices=metrics_choices)
# Finetune and evaluate by PaddleHub's API
# will finish training, evaluation, testing, save model automatically
cls_task.finetune_and_eval()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册