diff --git a/modules/video/multiple_object_tracking/jde_darknet53/README.md b/modules/video/multiple_object_tracking/jde_darknet53/README.md new file mode 100644 index 0000000000000000000000000000000000000000..17398169d0cd1e4a7bb77d0102ad675552aea2aa --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/README.md @@ -0,0 +1,124 @@ +# jde_darknet53 + +|模型名称|jde_darknet53| +| :--- | :---: | +|类别|视频 - 多目标追踪| +|网络|YOLOv3| +|数据集|Caltech Pedestrian+CityPersons+CUHK-SYSU+PRW+ETHZ+MOT17| +|是否支持Fine-tuning|否| +|模型大小|420MB| +|最新更新日期|2021-08-26| +|数据指标|-| + + +## 一、模型基本信息 + +- ### 应用效果展示 + - 样例结果示例: +

+
+

+ +- ### 模型介绍 + + - JDE(Joint Detection and Embedding)是在一个单一的共享神经网络中同时学习目标检测任务和embedding任务,并同时输出检测结果和对应的外观embedding匹配的算法。JDE原论文是基于Anchor Base的YOLOv3检测器新增加一个ReID分支学习embedding,训练过程被构建为一个多任务联合学习问题,兼顾精度和速度。 + + - 更多详情参考:[Towards Real-Time Multi-Object Tracking](https://arxiv.org/abs/1909.12605) + + + +## 二、安装 + +- ### 1、环境依赖 + + - ppdet >= 2.1.0 + + - opencv-python + +- ### 2、安装 + + - ```shell + $ hub install jde_darknet53 + ``` + - 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md) + | [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md) + + +## 三、模型API预测 + +- ### 1、命令行预测 + + - ```shell + # Read from a video file + $ hub run jde_darknet53 --video_stream "/PATH/TO/VIDEO" + ``` + - 通过命令行方式实现多目标追踪模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst) + +- ### 2、代码示例 + + - ```python + import paddlehub as hub + + tracker = hub.Module(name="jde_darknet53") + # Read from a video file + tracker.tracking('/PATH/TO/VIDEO', output_dir='mot_result', visualization=True, + draw_threshold=0.5, use_gpu=False, from_device=False) + # or read from a image stream + # with tracker.stream_mode(output_dir='image_stream_output', visualization=True, draw_threshold=0.5, use_gpu=True): + # tracker.predict([images]) + ``` + +- ### 3、API + + - ```python + def tracking(video_stream, + output_dir='', + visualization=True, + draw_threshold=0.5, + use_gpu=False) + ``` + - 视频预测API,完成对视频内容的多目标追踪,并存储追踪结果。 + + - **参数** + + - video_stream (str): 视频文件的路径;
+ - output_dir (str): 结果保存路径的根目录,默认为当前目录;
+ - visualization (bool): 是否保存追踪结果;
+ - use\_gpu (bool): 是否使用 GPU;
+ - draw\_threshold (float): 预测置信度的阈值。 + + - ```python + def stream_mode(output_dir='', + visualization=True, + draw_threshold=0.5, + use_gpu=False) + ``` + - 进入图片流预测模式API,在该模式中完成对图片流的多目标追踪,并存储追踪结果。 + + - **参数** + + - output_dir (str): 结果保存路径的根目录,默认为当前目录;
+ - visualization (bool): 是否保存追踪结果;
+ - use\_gpu (bool): 是否使用 GPU;
+ - draw\_threshold (float): 预测置信度的阈值。 + + - ```python + def predict(images: list = []) + ``` + - 对图片进行预测的API, 该接口必须在stream_mode API被调用后使用。 + + - **参数** + + - images (list): 待预测的图片列表。 + + + +## 四、更新历史 + +* 1.0.0 + + 初始发布 + + - ```shell + $ hub install jde_darknet53==1.0.0 + ``` diff --git a/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/jde_darknet53.yml b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/jde_darknet53.yml new file mode 100644 index 0000000000000000000000000000000000000000..73faa52f662e7db24ef40c25c029561225d1a3b8 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/jde_darknet53.yml @@ -0,0 +1,56 @@ +architecture: JDE +pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams +find_unused_parameters: True + +JDE: + detector: YOLOv3 + reid: JDEEmbeddingHead + tracker: JDETracker + +YOLOv3: + backbone: DarkNet + neck: YOLOv3FPN + yolo_head: YOLOv3Head + post_process: JDEBBoxPostProcess + for_mot: True + +DarkNet: + depth: 53 + return_idx: [2, 3, 4] + freeze_norm: True + +YOLOv3FPN: + freeze_norm: True + +YOLOv3Head: + anchors: [[128,384], [180,540], [256,640], [512,640], + [32,96], [45,135], [64,192], [90,271], + [8,24], [11,34], [16,48], [23,68]] + anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] + loss: JDEDetectionLoss + +JDEBBoxPostProcess: + decode: + name: JDEBox + conf_thresh: 0.3 + downsample_ratio: 32 + nms: + name: MultiClassNMS + keep_top_k: 500 + score_threshold: 0.01 + nms_threshold: 0.5 + nms_top_k: 2000 + normalized: true + +JDEEmbeddingHead: + anchor_levels: 3 + anchor_scales: 4 + embedding_dim: 512 + emb_loss: JDEEmbeddingLoss + jde_loss: JDELoss + +JDETracker: + det_thresh: 0.3 + track_buffer: 30 + min_box_area: 200 + motion: KalmanFilter diff --git a/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/jde_reader_1088x608.yml b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/jde_reader_1088x608.yml new file mode 100644 index 0000000000000000000000000000000000000000..527600681163527b0365792ab5dfa4f1aea2f120 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/jde_reader_1088x608.yml @@ -0,0 +1,57 @@ +worker_num: 2 +TrainReader: + sample_transforms: + - Decode: {} + - RGBReverse: {} + - AugmentHSV: {} + - LetterBoxResize: {target_size: [608, 1088]} + - MOTRandomAffine: {} + - RandomFlip: {} + - BboxXYXY2XYWH: {} + - NormalizeBox: {} + - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} + - RGBReverse: {} + - Permute: {} + batch_transforms: + - Gt2JDETargetThres: + anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] + anchors: [[[128,384], [180,540], [256,640], [512,640]], + [[32,96], [45,135], [64,192], [90,271]], + [[8,24], [11,34], [16,48], [23,68]]] + downsample_ratios: [32, 16, 8] + ide_thresh: 0.5 + fg_thresh: 0.5 + bg_thresh: 0.4 + batch_size: 4 + shuffle: true + drop_last: true + use_shared_memory: true + + +EvalMOTReader: + sample_transforms: + - Decode: {} + - LetterBoxResize: {target_size: [608, 1088]} + - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} + - Permute: {} + batch_size: 1 + + +TestMOTReader: + inputs_def: + image_shape: [3, 608, 1088] + sample_transforms: + - Decode: {} + - LetterBoxResize: {target_size: [608, 1088]} + - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} + - Permute: {} + batch_size: 1 + + +MOTVideoStreamReader: + sample_transforms: + - Decode: {} + - LetterBoxResize: {target_size: [608, 1088]} + - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} + - Permute: {} + batch_size: 1 diff --git a/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/mot.yml b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/mot.yml new file mode 100644 index 0000000000000000000000000000000000000000..7107da4905e88847aba29e66346a5c05bc418462 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/mot.yml @@ -0,0 +1,23 @@ +metric: MOT +num_classes: 1 + +# for MOT training +TrainDataset: + !MOTDataSet + dataset_dir: dataset/mot + image_lists: ['mot17.train', 'caltech.all', 'cuhksysu.train', 'prw.train', 'citypersons.train', 'eth.train'] + data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide'] + +# for MOT evaluation +# If you want to change the MOT evaluation dataset, please modify 'data_root' +EvalMOTDataset: + !MOTImageFolder + dataset_dir: dataset/mot + data_root: MOT16/images/train + keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT + +# for MOT video inference +TestMOTDataset: + !MOTImageFolder + dataset_dir: dataset/mot + keep_ori_im: True # set True if save visualization images or video diff --git a/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/optimizer_30e.yml b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/optimizer_30e.yml new file mode 100644 index 0000000000000000000000000000000000000000..eec33930926877319aff8b00de516068e646aaea --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/optimizer_30e.yml @@ -0,0 +1,19 @@ +epoch: 30 + +LearningRate: + base_lr: 0.01 + schedulers: + - !PiecewiseDecay + gamma: 0.1 + milestones: [15, 22] + use_warmup: True + - !BurninWarmup + steps: 1000 + +OptimizerBuilder: + optimizer: + momentum: 0.9 + type: Momentum + regularizer: + factor: 0.0001 + type: L2 diff --git a/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/optimizer_60e.yml b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/optimizer_60e.yml new file mode 100644 index 0000000000000000000000000000000000000000..986764a42f6bfb24d09cb23b49ed6931dbed9352 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/optimizer_60e.yml @@ -0,0 +1,19 @@ +epoch: 60 + +LearningRate: + base_lr: 0.01 + schedulers: + - !PiecewiseDecay + gamma: 0.1 + milestones: [30, 44] + use_warmup: True + - !BurninWarmup + steps: 1000 + +OptimizerBuilder: + optimizer: + momentum: 0.9 + type: Momentum + regularizer: + factor: 0.0001 + type: L2 diff --git a/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/runtime.yml b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/runtime.yml new file mode 100644 index 0000000000000000000000000000000000000000..c502ddabeb93d95a850fe7cb83a1e68ceff3a4e4 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/config/_base_/runtime.yml @@ -0,0 +1,5 @@ +use_gpu: true +log_iter: 20 +save_dir: output +snapshot_epoch: 1 +print_flops: false diff --git a/modules/video/multiple_object_tracking/jde_darknet53/config/jde_darknet53_30e_1088x608.yml b/modules/video/multiple_object_tracking/jde_darknet53/config/jde_darknet53_30e_1088x608.yml new file mode 100644 index 0000000000000000000000000000000000000000..d2ac3aee460aaa378dcef11c3a3fce9aa4c29f05 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/config/jde_darknet53_30e_1088x608.yml @@ -0,0 +1,46 @@ +_BASE_: [ + '_base_/mot.yml', + '_base_/runtime.yml', + '_base_/optimizer_30e.yml', + '_base_/jde_darknet53.yml', + '_base_/jde_reader_1088x608.yml', +] + +JDE: + detector: YOLOv3 + reid: JDEEmbeddingHead + tracker: JDETracker + +YOLOv3: + backbone: DarkNet + neck: YOLOv3FPN + yolo_head: YOLOv3Head + post_process: JDEBBoxPostProcess + for_mot: True + +YOLOv3Head: + anchors: [[128,384], [180,540], [256,640], [512,640], + [32,96], [45,135], [64,192], [90,271], + [8,24], [11,34], [16,48], [23,68]] + anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] + loss: JDEDetectionLoss + +JDETracker: + det_thresh: 0.3 + track_buffer: 30 + min_box_area: 200 + motion: KalmanFilter + +JDEBBoxPostProcess: + decode: + name: JDEBox + conf_thresh: 0.5 + downsample_ratio: 32 + nms: + name: MultiClassNMS + keep_top_k: 500 + score_threshold: 0.01 + nms_threshold: 0.4 + nms_top_k: 2000 + normalized: true + return_index: true diff --git a/modules/video/multiple_object_tracking/jde_darknet53/dataset.py b/modules/video/multiple_object_tracking/jde_darknet53/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..ff584d41995237dce107e1f103d862af942ed6a5 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/dataset.py @@ -0,0 +1,210 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import sys +import six +from collections.abc import Mapping +from collections import deque + +from ppdet.core.workspace import register, serializable +from ppdet.utils.logger import setup_logger +from ppdet.data.reader import BaseDataLoader, Compose +from paddle.fluid.dataloader.collate import default_collate_fn +import cv2 +from imageio import imread, imwrite +import numpy as np +import paddle + +logger = setup_logger(__name__) + + +@register +@serializable +class MOTVideoStream: + """ + Load MOT dataset with MOT format from video stream. + Args: + video_stream (str): path or url of the video file, default ''. + keep_ori_im (bool): whether to keep original image, default False. + Set True when used during MOT model inference while saving + images or video, or used in DeepSORT. + """ + def __init__(self, video_stream=None, keep_ori_im=False, **kwargs): + self.video_stream = video_stream + self.keep_ori_im = keep_ori_im + self._curr_iter = 0 + self.transform = None + try: + if video_stream == None: + print('No video stream is specified, please check the --video_stream option.') + raise FileNotFoundError("No video_stream is specified.") + self.stream = cv2.VideoCapture(video_stream) + if not self.stream.isOpened(): + raise Exception("Open video stream Error!") + except Exception as e: + print('Failed to read {}.'.format(video_stream)) + raise e + + self.videoframeraw_dir = os.path.splitext(os.path.basename(self.video_stream))[0] + '_raw' + if not os.path.exists(self.videoframeraw_dir): + os.makedirs(self.videoframeraw_dir) + + def set_kwargs(self, **kwargs): + self.mixup_epoch = kwargs.get('mixup_epoch', -1) + self.cutmix_epoch = kwargs.get('cutmix_epoch', -1) + self.mosaic_epoch = kwargs.get('mosaic_epoch', -1) + + def set_transform(self, transform): + self.transform = transform + + def set_epoch(self, epoch_id): + self._epoch = epoch_id + + def parse_dataset(self): + pass + + def __iter__(self): + ct = 0 + while True: + ret, frame = self.stream.read() + if ret: + imgname = os.path.join(self.videoframeraw_dir, 'frame{}.png'.format(ct)) + cv2.imwrite(imgname, frame) + image = imread(imgname) + rec = {'im_id': np.array([ct]), 'im_file': imgname} + if self.keep_ori_im: + rec.update({'keep_ori_im': 1}) + rec['curr_iter'] = self._curr_iter + self._curr_iter += 1 + ct += 1 + if self.transform: + yield self.transform(rec) + else: + yield rec + else: + return + + +@register +@serializable +class MOTImageStream: + """ + Load MOT dataset with MOT format from image stream. + Args: + keep_ori_im (bool): whether to keep original image, default False. + Set True when used during MOT model inference while saving + images or video, or used in DeepSORT. + """ + def __init__(self, sample_num=-1, keep_ori_im=False, **kwargs): + self.keep_ori_im = keep_ori_im + self._curr_iter = 0 + self.transform = None + self.imagequeue = deque() + + self.frameraw_dir = 'inputimages_raw' + if not os.path.exists(self.frameraw_dir): + os.makedirs(self.frameraw_dir) + + def add_image(self, image): + self.imagequeue.append(image) + + def set_kwargs(self, **kwargs): + self.mixup_epoch = kwargs.get('mixup_epoch', -1) + self.cutmix_epoch = kwargs.get('cutmix_epoch', -1) + self.mosaic_epoch = kwargs.get('mosaic_epoch', -1) + + def set_transform(self, transform): + self.transform = transform + + def set_epoch(self, epoch_id): + self._epoch = epoch_id + + def parse_dataset(self): + pass + + def __iter__(self): + ct = 0 + while True: + if self.imagequeue: + frame = self.imagequeue.popleft() + imgname = os.path.join(self.frameraw_dir, 'frame{}.png'.format(ct)) + cv2.imwrite(imgname, frame) + image = imread(imgname) + rec = {'im_id': np.array([ct]), 'im_file': imgname} + if self.keep_ori_im: + rec.update({'keep_ori_im': 1}) + rec['curr_iter'] = self._curr_iter + self._curr_iter += 1 + ct += 1 + if self.transform: + yield self.transform(rec) + else: + yield rec + else: + return + + +@register +class MOTVideoStreamReader: + __shared__ = ['num_classes'] + + def __init__(self, sample_transforms=[], batch_size=1, drop_last=False, num_classes=1, **kwargs): + self._sample_transforms = Compose(sample_transforms, num_classes=num_classes) + self.batch_size = batch_size + self.drop_last = drop_last + self.num_classes = num_classes + self.kwargs = kwargs + + def __call__( + self, + dataset, + worker_num, + ): + self.dataset = dataset + # get data + self.dataset.set_transform(self._sample_transforms) + # set kwargs + self.dataset.set_kwargs(**self.kwargs) + + self.loader = iter(self.dataset) + return self + + def __len__(self): + return sys.maxint + + def __iter__(self): + return self + + def to_tensor(self, batch): + paddle.disable_static() + if isinstance(batch, np.ndarray): + batch = paddle.to_tensor(batch) + elif isinstance(batch, Mapping): + batch = {key: self.to_tensor(batch[key]) for key in batch} + return batch + + def __next__(self): + try: + batch = [] + for i in range(self.batch_size): + batch.append(next(self.loader)) + batch = default_collate_fn(batch) + return self.to_tensor(batch) + + except StopIteration as e: + raise e + + def next(self): + # python2 compatibility + return self.__next__() diff --git a/modules/video/multiple_object_tracking/jde_darknet53/module.py b/modules/video/multiple_object_tracking/jde_darknet53/module.py new file mode 100644 index 0000000000000000000000000000000000000000..98b0c287596f004689e7c43a8ee17411c0fc9bf7 --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/module.py @@ -0,0 +1,244 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import sys +import signal +import glob +import argparse + +import paddle +from ppdet.core.workspace import load_config, merge_config +from ppdet.engine import Tracker +from ppdet.utils.check import check_gpu, check_version, check_config +from ppdet.utils.logger import setup_logger +import paddlehub as hub +from paddlehub.module.module import moduleinfo, serving, runnable +import cv2 + +from .tracker import StreamTracker + +logger = setup_logger('Predict') + + +@moduleinfo(name="jde_darknet53", + type="CV/multiple_object_tracking", + author="paddlepaddle", + author_email="", + summary="JDE is a joint detection and appearance embedding model for multiple object tracking.", + version="1.0.0") +class JDETracker_1088x608: + def __init__(self): + self.pretrained_model = os.path.join(self.directory, "jde_darknet53_30e_1088x608") + + def tracking(self, video_stream, output_dir='mot_result', visualization=True, draw_threshold=0.5, use_gpu=False): + ''' + Track a video, and save the prediction results into output_dir, if visualization is set as True. + + video_stream: the video path + output_dir: specify the dir to save the results + visualization: if True, save the results as a video, otherwise not. + draw_threshold: the threshold for the prediction results + use_gpu: if True, use gpu to perform the computation, otherwise cpu. + ''' + self.video_stream = video_stream + self.output_dir = output_dir + self.visualization = visualization + self.draw_threshold = draw_threshold + self.use_gpu = use_gpu + + cfg = load_config(os.path.join(self.directory, 'config', 'jde_darknet53_30e_1088x608.yml')) + check_config(cfg) + + place = 'gpu:0' if use_gpu else 'cpu' + place = paddle.set_device(place) + + paddle.disable_static() + tracker = StreamTracker(cfg, mode='test') + + # load weights + tracker.load_weights_jde(self.pretrained_model) + signal.signal(signal.SIGINT, self.signalhandler) + # inference + tracker.videostream_predict(video_stream=video_stream, + output_dir=output_dir, + data_type='mot', + model_type='JDE', + visualization=visualization, + draw_threshold=draw_threshold) + + def stream_mode(self, output_dir='mot_result', visualization=True, draw_threshold=0.5, use_gpu=False): + ''' + Entering the stream mode enables image stream prediction. Users can predict the images like a stream and save the results to a video. + + output_dir: specify the dir to save the results + visualization: if True, save the results as a video, otherwise not. + draw_threshold: the threshold for the prediction results + use_gpu: if True, use gpu to perform the computation, otherwise cpu. + ''' + self.output_dir = output_dir + self.visualization = visualization + self.draw_threshold = draw_threshold + self.use_gpu = use_gpu + + cfg = load_config(os.path.join(self.directory, 'config', 'jde_darknet53_30e_1088x608.yml')) + check_config(cfg) + + place = 'gpu:0' if use_gpu else 'cpu' + place = paddle.set_device(place) + + paddle.disable_static() + self.tracker = StreamTracker(cfg, mode='test') + + # load weights + self.tracker.load_weights_jde(self.pretrained_model) + signal.signal(signal.SIGINT, self.signalhandler) + return self + + def __enter__(self): + self.tracker_generator = self.tracker.imagestream_predict(self.output_dir, + data_type='mot', + model_type='JDE', + visualization=self.visualization, + draw_threshold=self.draw_threshold) + next(self.tracker_generator) + + def __exit__(self, exc_type, exc_value, traceback): + seq = 'inputimages' + save_dir = os.path.join(self.output_dir, 'mot_outputs', seq) if self.visualization else None + if self.visualization: + #### Save using ffmpeg + #output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) + #cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format( + # save_dir, output_video_path) + #os.system(cmd_str) + #### Save using opencv + output_video_path = os.path.join(save_dir, '..', '{}_vis.avi'.format(seq)) + imgnames = glob.glob(os.path.join(save_dir, '*.jpg')) + if len(imgnames) == 0: + logger.info('No output images to save for video') + return + img = cv2.imread(os.path.join(save_dir, '00000.jpg')) + video_writer = cv2.VideoWriter(output_video_path, + fourcc=cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), + fps=30, + frameSize=[img.shape[1], img.shape[0]]) + for i in range(len(imgnames)): + imgpath = os.path.join(save_dir, '{:05d}.jpg'.format(i)) + img = cv2.imread(imgpath) + video_writer.write(img) + video_writer.release() + logger.info('Save video in {}'.format(output_video_path)) + + def predict(self, images: list = []): + ''' + Predict the images. This method should called in stream_mode. + + images: the image list used for prediction. + + Example: + tracker = hub.Module('fairmot_dla34') + with tracker.stream_mode(output_dir='image_stream_output', visualization=True, draw_threshold=0.5, use_gpu=True): + tracker.predict([images]) + ''' + length = len(images) + if length == 0: + print('No images provided.') + return + for image in images: + self.tracker.dataset.add_image(image) + try: + results = next(self.tracker_generator) + except StopIteration as e: + return + + return results[-length:] + + @runnable + def run_cmd(self, argvs: list): + """ + Run as a command. + """ + self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name), + prog='hub run {}'.format(self.name), + usage='%(prog)s', + add_help=True) + + self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required") + self.arg_config_group = self.parser.add_argument_group( + title="Config options", description="Run configuration for controlling module behavior, not required.") + self.add_module_config_arg() + self.add_module_input_arg() + self.args = self.parser.parse_args(argvs) + self.tracking( + video_stream=self.args.video_stream, + output_dir=self.args.output_dir, + visualization=self.args.visualization, + draw_threshold=self.args.draw_threshold, + use_gpu=self.args.use_gpu, + ) + + def signalhandler(self, signum, frame): + seq = os.path.splitext(os.path.basename(self.video_stream))[0] + save_dir = os.path.join(self.output_dir, 'mot_outputs', seq) if self.visualization else None + if self.visualization: + #### Save using ffmpeg + #output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) + #cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format( + # save_dir, output_video_path) + #os.system(cmd_str) + #### Save using opencv + output_video_path = os.path.join(save_dir, '..', '{}_vis.avi'.format(seq)) + imgnames = glob.glob(os.path.join(save_dir, '*.jpg')) + if len(imgnames) == 0: + logger.info('No output images to save for video') + return + img = cv2.imread(os.path.join(save_dir, '00000.jpg')) + video_writer = cv2.VideoWriter(output_video_path, + fourcc=cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), + fps=30, + frameSize=[img.shape[1], img.shape[0]]) + for i in range(len(imgnames)): + imgpath = os.path.join(save_dir, '{:05d}.jpg'.format(i)) + img = cv2.imread(imgpath) + video_writer.write(img) + video_writer.release() + logger.info('Save video in {}'.format(output_video_path)) + print('Program Interrupted! Save video in {}'.format(output_video_path)) + exit(0) + + def add_module_config_arg(self): + """ + Add the command config options. + """ + self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not") + + self.arg_config_group.add_argument('--output_dir', + type=str, + default='mot_result', + help='Directory name for output tracking results.') + self.arg_config_group.add_argument('--visualization', + action='store_true', + help="whether to save output as images.") + self.arg_config_group.add_argument("--draw_threshold", + type=float, + default=0.5, + help="Threshold to reserve the result for visualization.") + + def add_module_input_arg(self): + """ + Add the command input options. + """ + self.arg_input_group.add_argument('--video_stream', + type=str, + help="path to video stream, can be a video file or stream device number.") diff --git a/modules/video/multiple_object_tracking/jde_darknet53/requirements.txt b/modules/video/multiple_object_tracking/jde_darknet53/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..d2dc6ba96ad7d025f5ed9fc954f8e6030175227b --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/requirements.txt @@ -0,0 +1,2 @@ +ppdet >= 2.1.0 +opencv-python diff --git a/modules/video/multiple_object_tracking/jde_darknet53/tracker.py b/modules/video/multiple_object_tracking/jde_darknet53/tracker.py new file mode 100644 index 0000000000000000000000000000000000000000..5a984359edc18cf7e128e12e754fe201bf55fccc --- /dev/null +++ b/modules/video/multiple_object_tracking/jde_darknet53/tracker.py @@ -0,0 +1,256 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import cv2 +import glob +import paddle +import numpy as np + +from ppdet.core.workspace import create +from ppdet.utils.checkpoint import load_weight, load_pretrain_weight +from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box +from ppdet.modeling.mot.utils import Timer, load_det_results +from ppdet.modeling.mot import visualization as mot_vis +from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric +import ppdet.utils.stats as stats +from ppdet.engine.callbacks import Callback, ComposeCallback +from ppdet.utils.logger import setup_logger + +from .dataset import MOTVideoStream, MOTImageStream + +logger = setup_logger(__name__) + + +class StreamTracker(object): + def __init__(self, cfg, mode='eval'): + self.cfg = cfg + assert mode.lower() in ['test', 'eval'], \ + "mode should be 'test' or 'eval'" + self.mode = mode.lower() + self.optimizer = None + + # build model + self.model = create(cfg.architecture) + + self.status = {} + self.start_epoch = 0 + + def load_weights_jde(self, weights): + load_weight(self.model, weights, self.optimizer) + + def _eval_seq_jde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, draw_threshold=0): + if save_dir: + if not os.path.exists(save_dir): os.makedirs(save_dir) + tracker = self.model.tracker + tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer) + + timer = Timer() + results = [] + frame_id = 0 + self.status['mode'] = 'track' + self.model.eval() + for step_id, data in enumerate(dataloader): + #print('data', data) + self.status['step_id'] = step_id + if frame_id % 40 == 0: + logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time))) + + # forward + timer.tic() + pred_dets, pred_embs = self.model(data) + online_targets = self.model.tracker.update(pred_dets, pred_embs) + + online_tlwhs, online_ids = [], [] + online_scores = [] + for t in online_targets: + tlwh = t.tlwh + tid = t.track_id + tscore = t.score + if tscore < draw_threshold: continue + vertical = tlwh[2] / tlwh[3] > 1.6 + if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical: + online_tlwhs.append(tlwh) + online_ids.append(tid) + online_scores.append(tscore) + timer.toc() + + # save results + results.append((frame_id + 1, online_tlwhs, online_scores, online_ids)) + self.save_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, + save_dir) + frame_id += 1 + + return results, frame_id, timer.average_time, timer.calls + + def _eval_seq_jde_single_image(self, iterator, save_dir=None, show_image=False, draw_threshold=0): + if save_dir: + if not os.path.exists(save_dir): os.makedirs(save_dir) + tracker = self.model.tracker + results = [] + frame_id = 0 + self.status['mode'] = 'track' + self.model.eval() + timer = Timer() + while True: + try: + data = next(iterator) + timer.tic() + with paddle.no_grad(): + pred_dets, pred_embs = self.model(data) + online_targets = self.model.tracker.update(pred_dets, pred_embs) + + online_tlwhs, online_ids = [], [] + online_scores = [] + for t in online_targets: + tlwh = t.tlwh + tid = t.track_id + tscore = t.score + if tscore < draw_threshold: continue + vertical = tlwh[2] / tlwh[3] > 1.6 + if tlwh[2] * tlwh[3] > tracker.min_box_area and not vertical: + online_tlwhs.append(tlwh) + online_ids.append(tid) + online_scores.append(tscore) + timer.toc() + # save results + results.append((frame_id + 1, online_tlwhs, online_scores, online_ids)) + self.save_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, + show_image, save_dir) + frame_id += 1 + + yield results, frame_id + + except StopIteration as e: + return + + def imagestream_predict(self, output_dir, data_type='mot', model_type='JDE', visualization=True, + draw_threshold=0.5): + if not os.path.exists(output_dir): os.makedirs(output_dir) + result_root = os.path.join(output_dir, 'mot_results') + if not os.path.exists(result_root): os.makedirs(result_root) + assert data_type in ['mot', 'kitti'], \ + "data_type should be 'mot' or 'kitti'" + assert model_type in ['JDE', 'FairMOT'], \ + "model_type should be 'JDE', or 'FairMOT'" + seq = 'inputimages' + self.dataset = MOTImageStream(keep_ori_im=True) + + save_dir = os.path.join(output_dir, 'mot_outputs', seq) if visualization else None + + self.dataloader = create('MOTVideoStreamReader')(self.dataset, 0) + self.dataloader_iter = iter(self.dataloader) + result_filename = os.path.join(result_root, '{}.txt'.format(seq)) + + if model_type in ['JDE', 'FairMOT']: + generator = self._eval_seq_jde_single_image( + self.dataloader_iter, save_dir=save_dir, draw_threshold=draw_threshold) + else: + raise ValueError(model_type) + yield + results = [] + while True: + with paddle.no_grad(): + try: + results, nf = next(generator) + yield results + except StopIteration as e: + self.write_mot_results(result_filename, results, data_type) + return + + def videostream_predict(self, + video_stream, + output_dir, + data_type='mot', + model_type='JDE', + visualization=True, + draw_threshold=0.5): + assert video_stream is not None, \ + "--video_file or --image_dir should be set." + + if not os.path.exists(output_dir): os.makedirs(output_dir) + result_root = os.path.join(output_dir, 'mot_results') + if not os.path.exists(result_root): os.makedirs(result_root) + assert data_type in ['mot', 'kitti'], \ + "data_type should be 'mot' or 'kitti'" + assert model_type in ['JDE', 'FairMOT'], \ + "model_type should be 'JDE', or 'FairMOT'" + seq = os.path.splitext(os.path.basename(video_stream))[0] + self.dataset = MOTVideoStream(video_stream, keep_ori_im=True) + + save_dir = os.path.join(output_dir, 'mot_outputs', seq) if visualization else None + + dataloader = create('MOTVideoStreamReader')(self.dataset, 0) + result_filename = os.path.join(result_root, '{}.txt'.format(seq)) + + with paddle.no_grad(): + if model_type in ['JDE', 'FairMOT']: + results, nf, ta, tc = self._eval_seq_jde(dataloader, save_dir=save_dir, draw_threshold=draw_threshold) + else: + raise ValueError(model_type) + + self.write_mot_results(result_filename, results, data_type) + + if visualization: + #### Save using ffmpeg + #output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) + #cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" {}'.format( + # save_dir, output_video_path) + #os.system(cmd_str) + #### Save using opencv + output_video_path = os.path.join(save_dir, '..', '{}_vis.avi'.format(seq)) + imgnames = glob.glob(os.path.join(save_dir, '*.jpg')) + if len(imgnames) == 0: + logger.info('No output images to save for video') + return + img = cv2.imread(os.path.join(save_dir, '00000.jpg')) + video_writer = cv2.VideoWriter(output_video_path, fourcc=cv2.VideoWriter_fourcc('M','J','P','G'), fps=30, frameSize=[img.shape[1],img.shape[0]]) + for i in range(len(imgnames)): + imgpath = os.path.join(save_dir, '{:05d}.jpg'.format(i)) + img = cv2.imread(imgpath) + video_writer.write(img) + video_writer.release() + logger.info('Save video in {}'.format(output_video_path)) + + def write_mot_results(self, filename, results, data_type='mot'): + if data_type in ['mot', 'mcmot', 'lab']: + save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n' + elif data_type == 'kitti': + save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' + else: + raise ValueError(data_type) + + with open(filename, 'w') as f: + for frame_id, tlwhs, tscores, track_ids in results: + if data_type == 'kitti': + frame_id -= 1 + for tlwh, score, track_id in zip(tlwhs, tscores, track_ids): + if track_id < 0: + continue + x1, y1, w, h = tlwh + x2, y2 = x1 + w, y1 + h + line = save_format.format( + frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=score) + f.write(line) + logger.info('MOT results save in {}'.format(filename)) + + def save_results(self, data, frame_id, online_ids, online_tlwhs, online_scores, average_time, show_image, save_dir): + if show_image or save_dir is not None: + assert 'ori_image' in data + img0 = data['ori_image'].numpy()[0] + online_im = mot_vis.plot_tracking( + img0, online_tlwhs, online_ids, online_scores, frame_id=frame_id, fps=1. / average_time) + if show_image: + cv2.imshow('online_im', online_im) + if save_dir is not None: + cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im)