Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
1ebde3bd
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
1ebde3bd
编写于
2月 13, 2019
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimizer the method of serialize param attribute
上级
bfedfda8
变更
5
展开全部
显示空白变更内容
内联
并排
Showing
5 changed file
with
440 addition
and
587 deletion
+440
-587
paddle_hub/module.py
paddle_hub/module.py
+11
-81
paddle_hub/module_desc.proto
paddle_hub/module_desc.proto
+21
-31
paddle_hub/module_desc_pb2.py
paddle_hub/module_desc_pb2.py
+214
-449
paddle_hub/paddle_helper.py
paddle_hub/paddle_helper.py
+105
-0
paddle_hub/utils.py
paddle_hub/utils.py
+89
-26
未找到文件。
paddle_hub/module.py
浏览文件 @
1ebde3bd
...
...
@@ -30,7 +30,8 @@ from paddle_hub.downloader import download_and_uncompress
from
paddle_hub
import
module_desc_pb2
from
paddle_hub.logger
import
logger
from
paddle_hub.signature
import
Signature
from
paddle_hub.utils
import
to_list
,
get_variable_info
,
mkdir
from
paddle_hub.utils
import
to_list
,
mkdir
from
paddle_hub.paddle_helper
import
from_param_to_flexible_data
,
get_variable_info
,
from_flexible_data_to_param
from
paddle_hub.version
import
__version__
__all__
=
[
"Module"
,
"ModuleConfig"
,
"ModuleUtils"
]
...
...
@@ -73,48 +74,10 @@ class Module(object):
def
_process_parameter
(
self
):
global_block
=
self
.
inference_program
.
global_block
()
param_attrs
=
self
.
config
.
desc
.
param_attrs
for
key
,
param_attr
in
param_attrs
.
items
():
param
=
{}
param_attrs
=
self
.
config
.
desc
.
extra_info
.
map
.
data
[
'param_attrs'
]
for
key
,
param_attr
in
param_attrs
.
map
.
data
.
items
():
param
=
from_flexible_data_to_param
(
param_attr
)
param
[
'name'
]
=
HUB_VAR_PREFIX
+
key
param
[
'trainable'
]
=
param_attr
.
trainable
param
[
'do_model_average'
]
=
param_attr
.
do_model_average
param
[
'optimize_attr'
]
=
{}
param
[
'optimize_attr'
][
'learning_rate'
]
=
param_attr
.
optimize_attr
.
m
[
'learning_rate'
].
f
# TODO(wuzewu): recover the param attr with a more reliable way
if
param_attr
.
regularizer
.
type
==
"L2DecayRegularizer"
:
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
param_attr
.
regularizer
.
regularization_coeff
)
elif
param_attr
.
regularizer
.
type
==
"L1DecayRegularizer"
:
regularizer
=
fluid
.
regularizer
.
L1DecayRegularizer
(
regularization_coeff
=
param_attr
.
regularizer
.
regularization_coeff
)
else
:
regularizer
=
None
param
[
'regularizer'
]
=
regularizer
if
param_attr
.
gradient_clip_attr
.
type
==
"ErrorClipByValue"
:
clip
=
fluid
.
clip
.
ErrorClipByValue
(
max
=
param_attr
.
gradient_clip_attr
.
max
,
min
=
param_attr
.
gradient_clip_attr
.
min
)
elif
param_attr
.
gradient_clip_attr
.
type
==
"GradientClipByValue"
:
clip
=
fluid
.
clip
.
GradientClipByValue
(
max
=
param_attr
.
gradient_clip_attr
.
max
,
min
=
param_attr
.
gradient_clip_attr
.
min
)
elif
param_attr
.
gradient_clip_attr
.
type
==
"GradientClipByNorm"
:
clip
=
fluid
.
clip
.
GradientClipByNorm
(
clip_norm
=
param_attr
.
gradient_clip_attr
.
clip_norm
)
elif
param_attr
.
gradient_clip_attr
.
type
==
"GradientClipByGlobalNorm"
:
clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
param_attr
.
gradient_clip_attr
.
clip_norm
,
group_name
=
param_attr
.
gradient_clip_attr
.
group_name
)
else
:
clip
=
None
param
[
'gradient_clip_attr'
]
=
clip
if
(
param
[
'name'
]
not
in
global_block
.
vars
):
continue
var
=
global_block
.
var
(
param
[
'name'
])
...
...
@@ -341,46 +304,13 @@ def create_module(sign_arr, module_dir=None, word_dict=None, place=None):
fo
.
write
(
"{}
\t
{}
\n
"
.
format
(
w
,
w_id
))
# save fluid Parameter
param_attrs
=
module_desc
.
param_attrs
extra_info
=
module_desc
.
extra_info
extra_info
.
type
=
module_desc_pb2
.
MAP
param_attrs
=
extra_info
.
map
.
data
[
'param_attrs'
]
param_attrs
.
type
=
module_desc_pb2
.
MAP
for
param
in
program
.
global_block
().
iter_parameters
():
param_attr
=
param_attrs
[
param
.
name
]
param_attr
.
trainable
=
param
.
trainable
if
param
.
do_model_average
:
param_attr
.
do_model_average
=
param
.
do_model_average
# TODO(wuzewu): add a func to transfer python dict to fexiable data
param_attr
.
optimize_attr
.
type
=
module_desc_pb2
.
MAP
param_attr
.
optimize_attr
.
m
[
'learning_rate'
].
type
=
module_desc_pb2
.
FLOAT
param_attr
.
optimize_attr
.
m
[
'learning_rate'
].
f
=
param
.
optimize_attr
[
'learning_rate'
]
if
param
.
regularizer
:
if
isinstance
(
param
.
regularizer
,
fluid
.
regularizer
.
L2DecayRegularizer
):
param_attr
.
regularizer
.
type
=
"L2DecayRegularizer"
if
isinstance
(
param
.
regularizer
,
fluid
.
regularizer
.
L1DecayRegularizer
):
param_attr
.
regularizer
.
type
=
"L1DecayRegularizer"
param_attr
.
regularizer
.
regularization_coeff
=
param
.
regularizer
.
regularization_coeff
if
param
.
gradient_clip_attr
:
if
isinstance
(
param
.
gradient_clip_attr
,
fluid
.
clip
.
ErrorClipByValue
):
param_attr
.
gradient_clip_attr
.
max
=
param
.
gradient_clip_attr
.
max
param_attr
.
gradient_clip_attr
.
min
=
param
.
gradient_clip_attr
.
min
param_attr
.
gradient_clip_attr
.
type
=
"ErrorClipByValue"
if
isinstance
(
param
.
gradient_clip_attr
,
fluid
.
clip
.
GradientClipByValue
):
param_attr
.
gradient_clip_attr
.
max
=
param
.
gradient_clip_attr
.
max
param_attr
.
gradient_clip_attr
.
min
=
param
.
gradient_clip_attr
.
min
param_attr
.
gradient_clip_attr
.
type
=
"GradientClipByValue"
if
isinstance
(
param
.
gradient_clip_attr
,
fluid
.
clip
.
GradientClipByNorm
):
param_attr
.
gradient_clip_attr
.
clip_norm
=
param
.
gradient_clip_attr
.
clip_norm
param_attr
.
gradient_clip_attr
.
type
=
"GradientClipByNorm"
if
isinstance
(
param
.
gradient_clip_attr
,
fluid
.
clip
.
GradientClipByGlobalNorm
):
param_attr
.
gradient_clip_attr
.
clip_norm
=
param
.
gradient_clip_attr
.
clip_norm
param_attr
.
gradient_clip_attr
.
group_name
=
param
.
gradient_clip_attr
.
group_name
param_attr
.
gradient_clip_attr
.
type
=
"GradientClipByGlobalNorm"
param_attr
=
param_attrs
.
map
.
data
[
param
.
name
]
from_param_to_flexible_data
(
param
,
param_attr
)
# save signarture info
sign_map
=
module_desc
.
sign2var
...
...
paddle_hub/module_desc.proto
浏览文件 @
1ebde3bd
...
...
@@ -19,23 +19,34 @@ option optimize_for = LITE_RUNTIME;
package
paddle_hub
;
enum
DataType
{
INT
=
0
;
FLOAT
=
1
;
STRING
=
2
;
BOOLEAN
=
3
;
LIST
=
4
;
MAP
=
5
;
NONE
=
0
;
INT
=
1
;
FLOAT
=
2
;
STRING
=
3
;
BOOLEAN
=
4
;
LIST
=
5
;
MAP
=
6
;
SET
=
7
;
OBJECT
=
8
;
}
message
KVData
{
map
<
string
,
DataType
>
keyType
=
1
;
map
<
string
,
FlexibleData
>
data
=
2
;
}
message
FlexibleData
{
DataType
type
=
1
;
string
name
=
2
;
int
32
i
=
3
;
int
64
i
=
3
;
float
f
=
4
;
bool
b
=
5
;
string
s
=
6
;
map
<
string
,
FlexibleData
>
m
=
7
;
map
<
int32
,
FlexibleData
>
l
=
8
;
KVData
map
=
7
;
KVData
list
=
8
;
KVData
set
=
9
;
KVData
object
=
10
;
string
info
=
11
;
}
// Feed Variable Description
...
...
@@ -61,27 +72,6 @@ message AuthInfo {
string
hub_version
=
2
;
}
message
ParamAttr
{
message
Regularizer
{
string
type
=
1
;
float
regularization_coeff
=
2
;
}
message
GradientClipAttr
{
string
type
=
1
;
float
min
=
2
;
float
max
=
3
;
float
clip_norm
=
4
;
string
group_name
=
5
;
}
Regularizer
regularizer
=
1
;
GradientClipAttr
gradient_clip_attr
=
2
;
FlexibleData
optimize_attr
=
3
;
bool
trainable
=
4
;
bool
do_model_average
=
5
;
}
// A Hub Module is stored in a directory with a file 'paddlehub.pb'
// containing a serialized protocol message of this type. The further contents
// of the directory depend on the storage format described by the message.
...
...
@@ -98,6 +88,6 @@ message ModuleDesc {
AuthInfo
auth_info
=
5
;
map
<
string
,
ParamAttr
>
param_attrs
=
6
;
FlexibleData
extra_info
=
6
;
};
paddle_hub/module_desc_pb2.py
浏览文件 @
1ebde3bd
此差异已折叠。
点击以展开。
paddle_hub/paddle_helper.py
0 → 100644
浏览文件 @
1ebde3bd
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
paddle_hub
import
module_desc_pb2
from
paddle_hub.utils
import
from_pyobj_to_flexible_data
,
from_flexible_data_to_pyobj
import
paddle
import
paddle.fluid
as
fluid
def
get_variable_info
(
var
):
assert
isinstance
(
var
,
fluid
.
framework
.
Variable
),
"var should be a fluid.framework.Variable"
var_info
=
{
'type'
:
var
.
type
,
'name'
:
var
.
name
,
'dtype'
:
var
.
dtype
,
'lod_level'
:
var
.
lod_level
,
'shape'
:
var
.
shape
,
'stop_gradient'
:
var
.
stop_gradient
,
'is_data'
:
var
.
is_data
,
'error_clip'
:
var
.
error_clip
}
if
isinstance
(
var
,
fluid
.
framework
.
Parameter
):
var_info
[
'trainable'
]
=
var
.
trainable
var_info
[
'optimize_attr'
]
=
var
.
optimize_attr
var_info
[
'regularizer'
]
=
var
.
regularizer
var_info
[
'gradient_clip_attr'
]
=
var
.
gradient_clip_attr
var_info
[
'do_model_average'
]
=
var
.
do_model_average
else
:
var_info
[
'persistable'
]
=
var
.
persistable
return
var_info
def
from_param_to_flexible_data
(
param
,
flexible_data
):
flexible_data
.
type
=
module_desc_pb2
.
MAP
from_pyobj_to_flexible_data
(
param
.
trainable
,
flexible_data
.
map
.
data
[
'trainable'
])
from_pyobj_to_flexible_data
(
param
.
do_model_average
,
flexible_data
.
map
.
data
[
'do_model_average'
])
from_pyobj_to_flexible_data
(
param
.
optimize_attr
,
flexible_data
.
map
.
data
[
'optimize_attr'
])
from_pyobj_to_flexible_data
(
param
.
regularizer
,
flexible_data
.
map
.
data
[
'regularizer'
])
from_pyobj_to_flexible_data
(
param
.
gradient_clip_attr
,
flexible_data
.
map
.
data
[
'gradient_clip_attr'
])
def
from_flexible_data_to_param
(
flexible_data
):
param
=
{
'gradient_clip_attr'
:
None
,
'regularizer'
:
None
}
param
[
'trainable'
]
=
from_flexible_data_to_pyobj
(
flexible_data
.
map
.
data
[
'trainable'
])
param
[
'do_model_average'
]
=
from_flexible_data_to_pyobj
(
flexible_data
.
map
.
data
[
'do_model_average'
])
param
[
'optimize_attr'
]
=
from_flexible_data_to_pyobj
(
flexible_data
.
map
.
data
[
'optimize_attr'
])
if
flexible_data
.
map
.
data
[
'regularizer'
].
type
!=
module_desc_pb2
.
NONE
:
regularizer_type
=
flexible_data
.
map
.
data
[
'regularizer'
].
name
regularization_coeff
=
flexible_data
.
map
.
data
[
'regularizer'
].
object
.
data
[
'_regularization_coeff '
].
f
param
[
'regularizer'
]
=
eval
(
"fluid.regularizer.%s(regularization_coeff = %f)"
%
(
regularizer_type
,
regularization_coeff
))
if
flexible_data
.
map
.
data
[
'regularizer'
].
type
!=
module_desc_pb2
.
NONE
:
clip_type
=
flexible_data
.
map
.
data
[
'gradient_clip_attr'
].
name
if
clip_type
==
"ErrorClipByValue"
or
clip_type
==
"GradientClipByValue"
:
max
=
flexible_data
.
map
.
data
[
'regularizer'
].
name
,
flexible_data
.
map
.
data
[
'gradient_clip_attr'
].
object
.
data
[
'max'
].
f
min
=
flexible_data
.
map
.
data
[
'regularizer'
].
name
,
flexible_data
.
map
.
data
[
'gradient_clip_attr'
].
object
.
data
[
'min'
].
f
param
[
'gradient_clip_attr'
]
=
eval
(
"fluid.clip.%s(max = %f, min = %f)"
%
(
clip_type
,
max
,
min
))
if
clip_type
==
"GradientClipByNorm"
:
clip_norm
=
flexible_data
.
map
.
data
[
'gradient_clip_attr'
].
object
.
data
[
'clip_norm'
].
f
param
[
'gradient_clip_attr'
]
=
eval
(
"fluid.clip.%s(clip_norm = %f)"
%
(
clip_type
,
clip_norm
))
if
clip_type
==
"GradientClipByGlobalNorm"
:
clip_norm
=
flexible_data
.
map
.
data
[
'gradient_clip_attr'
].
object
.
data
[
'clip_norm'
].
f
group_name
=
flexible_data
.
map
.
data
[
'gradient_clip_attr'
].
object
.
data
[
'group_name'
].
f
param
[
'gradient_clip_attr'
]
=
eval
(
"fluid.clip.%s(clip_norm = %f, group_name = %f)"
%
(
clip_type
,
clip_norm
,
group_name
))
return
param
paddle_hub/utils.py
浏览文件 @
1ebde3bd
...
...
@@ -17,6 +17,8 @@
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
paddle_hub
import
module_desc_pb2
from
paddle_hub.logger
import
logger
import
paddle
import
paddle.fluid
as
fluid
import
os
...
...
@@ -30,34 +32,95 @@ def to_list(input):
return
input
def
get_variable_info
(
var
):
assert
isinstance
(
var
,
fluid
.
framework
.
Variable
),
"var should be a fluid.framework.Variable"
var_info
=
{
'type'
:
var
.
type
,
'name'
:
var
.
name
,
'dtype'
:
var
.
dtype
,
'lod_level'
:
var
.
lod_level
,
'shape'
:
var
.
shape
,
'stop_gradient'
:
var
.
stop_gradient
,
'is_data'
:
var
.
is_data
,
'error_clip'
:
var
.
error_clip
}
if
isinstance
(
var
,
fluid
.
framework
.
Parameter
):
var_info
[
'trainable'
]
=
var
.
trainable
var_info
[
'optimize_attr'
]
=
var
.
optimize_attr
var_info
[
'regularizer'
]
=
var
.
regularizer
var_info
[
'gradient_clip_attr'
]
=
var
.
gradient_clip_attr
var_info
[
'do_model_average'
]
=
var
.
do_model_average
else
:
var_info
[
'persistable'
]
=
var
.
persistable
return
var_info
def
mkdir
(
path
):
""" the same as the shell command mkdir -p "
"""
if
not
os
.
path
.
exists
(
path
):
os
.
makedirs
(
path
)
def
get_keyed_type_of_pyobj
(
pyobj
):
if
isinstance
(
pyobj
,
bool
):
return
module_desc_pb2
.
BOOLEAN
elif
isinstance
(
pyobj
,
int
):
return
module_desc_pb2
.
INT
elif
isinstance
(
pyobj
,
str
):
return
module_desc_pb2
.
STRING
elif
isinstance
(
pyobj
,
float
):
return
module_desc_pb2
.
FLOAT
return
module_desc_pb2
.
STRING
def
from_pyobj_to_flexible_data
(
pyobj
,
flexible_data
):
if
isinstance
(
pyobj
,
bool
):
flexible_data
.
type
=
module_desc_pb2
.
BOOLEAN
flexible_data
.
b
=
pyobj
elif
isinstance
(
pyobj
,
int
):
flexible_data
.
type
=
module_desc_pb2
.
INT
flexible_data
.
i
=
pyobj
elif
isinstance
(
pyobj
,
str
):
flexible_data
.
type
=
module_desc_pb2
.
STRING
flexible_data
.
s
=
pyobj
elif
isinstance
(
pyobj
,
float
):
flexible_data
.
type
=
module_desc_pb2
.
FLOAT
flexible_data
.
f
=
pyobj
elif
isinstance
(
pyobj
,
list
)
or
isinstance
(
pyobj
,
tuple
):
flexible_data
.
type
=
module_desc_pb2
.
LIST
for
index
,
obj
in
enumerate
(
pyobj
):
from_pyobj_to_flexible_data
(
obj
,
flexible_data
.
list
.
data
[
str
(
index
)])
elif
isinstance
(
pyobj
,
set
):
flexible_data
.
type
=
module_desc_pb2
.
SET
for
index
,
obj
in
enumerate
(
list
(
pyobj
)):
from_pyobj_to_flexible_data
(
obj
,
flexible_data
.
set
.
data
[
str
(
index
)])
elif
isinstance
(
pyobj
,
dict
):
flexible_data
.
type
=
module_desc_pb2
.
MAP
for
key
,
value
in
pyobj
.
items
():
from_pyobj_to_flexible_data
(
value
,
flexible_data
.
map
.
data
[
str
(
key
)])
flexible_data
.
map
.
keyType
[
str
(
key
)]
=
get_keyed_type_of_pyobj
(
key
)
elif
isinstance
(
pyobj
,
type
(
None
)):
flexible_data
.
type
=
module_desc_pb2
.
NONE
else
:
flexible_data
.
type
=
module_desc_pb2
.
OBJECT
flexible_data
.
name
=
str
(
pyobj
.
__class__
.
__name__
)
for
key
,
value
in
pyobj
.
__dict__
.
items
():
from_pyobj_to_flexible_data
(
value
,
flexible_data
.
object
.
data
[
str
(
key
)])
flexible_data
.
object
.
keyType
[
str
(
key
)]
=
get_keyed_type_of_pyobj
(
key
)
def
from_flexible_data_to_pyobj
(
flexible_data
):
if
flexible_data
.
type
==
module_desc_pb2
.
BOOLEAN
:
result
=
flexible_data
.
b
elif
flexible_data
.
type
==
module_desc_pb2
.
INT
:
result
=
flexible_data
.
i
elif
flexible_data
.
type
==
module_desc_pb2
.
STRING
:
result
=
flexible_data
.
s
elif
flexible_data
.
type
==
module_desc_pb2
.
FLOAT
:
result
=
flexible_data
.
f
elif
flexible_data
.
type
==
module_desc_pb2
.
LIST
:
result
=
[]
for
index
in
range
(
len
(
flexible_data
.
list
.
data
)):
result
.
append
(
from_flexible_data_to_pyobj
(
flexible_data
.
m
.
data
(
str
(
index
))))
elif
flexible_data
.
type
==
module_desc_pb2
.
SET
:
result
=
set
()
for
index
in
range
(
len
(
flexible_data
.
set
.
data
)):
result
.
add
(
from_flexible_data_to_pyobj
(
flexible_data
.
m
.
data
(
str
(
index
))))
elif
flexible_data
.
type
==
module_desc_pb2
.
MAP
:
result
=
{}
for
key
,
value
in
flexible_data
.
map
.
data
.
items
():
key
=
flexible_data
.
map
.
keyType
[
key
]
result
[
key
]
=
from_flexible_data_to_pyobj
(
value
)
elif
flexible_data
.
type
==
module_desc_pb2
.
NONE
:
result
=
None
elif
flexible_data
.
type
==
module_desc_pb2
.
OBJECT
:
result
=
None
logger
.
warning
(
"can't tran flexible_data to python object"
)
else
:
result
=
None
logger
.
warning
(
"unknown type of flexible_data"
)
return
result
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录