Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
1b5a1e26
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 2 年 前同步成功
通知
285
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1b5a1e26
编写于
11月 04, 2022
作者:
jm_12138
提交者:
GitHub
11月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update modnet_resnet50vd_matting (#2100)
* add requirements.txt * add init * update format
上级
755425ce
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
217 addition
and
313 deletion
+217
-313
modules/image/matting/modnet_resnet50vd_matting/README.md
modules/image/matting/modnet_resnet50vd_matting/README.md
+15
-15
modules/image/matting/modnet_resnet50vd_matting/README_en.md
modules/image/matting/modnet_resnet50vd_matting/README_en.md
+13
-13
modules/image/matting/modnet_resnet50vd_matting/__init__.py
modules/image/matting/modnet_resnet50vd_matting/__init__.py
+0
-0
modules/image/matting/modnet_resnet50vd_matting/module.py
modules/image/matting/modnet_resnet50vd_matting/module.py
+112
-162
modules/image/matting/modnet_resnet50vd_matting/processor.py
modules/image/matting/modnet_resnet50vd_matting/processor.py
+13
-12
modules/image/matting/modnet_resnet50vd_matting/requirements.txt
.../image/matting/modnet_resnet50vd_matting/requirements.txt
+1
-0
modules/image/matting/modnet_resnet50vd_matting/resnet.py
modules/image/matting/modnet_resnet50vd_matting/resnet.py
+63
-111
未找到文件。
modules/image/matting/modnet_resnet50vd_matting/README.md
浏览文件 @
1b5a1e26
modules/image/matting/modnet_resnet50vd_matting/README_en.md
浏览文件 @
1b5a1e26
modules/image/matting/modnet_resnet50vd_matting/__init__.py
0 → 100644
浏览文件 @
1b5a1e26
modules/image/matting/modnet_resnet50vd_matting/module.py
浏览文件 @
1b5a1e26
...
@@ -11,33 +11,32 @@
...
@@ -11,33 +11,32 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
argparse
import
os
import
os
import
time
import
time
import
argparse
from
typing
import
Callable
from
typing
import
Callable
,
Union
,
List
,
Tuple
from
typing
import
List
from
typing
import
Union
import
numpy
as
np
import
cv2
import
cv2
import
scipy
import
modnet_resnet50vd_matting.processor
as
P
import
numpy
as
np
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
from
paddlehub.module.module
import
moduleinfo
import
scipy
import
paddlehub.vision.segmentation_transforms
as
T
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
from
modnet_resnet50vd_matting.resnet
import
ResNet50_vd
from
modnet_resnet50vd_matting.resnet
import
ResNet50_vd
import
modnet_resnet50vd_matting.processor
as
P
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
serving
@
moduleinfo
(
name
=
"modnet_resnet50vd_matting"
,
@
moduleinfo
(
name
=
"modnet_resnet50vd_matting"
,
type
=
"CV/matting"
,
type
=
"CV/matting"
,
author
=
"paddlepaddle"
,
author
=
"paddlepaddle"
,
summary
=
"modnet_resnet50vd_matting is a matting model"
,
summary
=
"modnet_resnet50vd_matting is a matting model"
,
version
=
"1.0.0"
version
=
"1.0.0"
)
)
class
MODNetResNet50Vd
(
nn
.
Layer
):
class
MODNetResNet50Vd
(
nn
.
Layer
):
"""
"""
The MODNet implementation based on PaddlePaddle.
The MODNet implementation based on PaddlePaddle.
...
@@ -51,14 +50,13 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -51,14 +50,13 @@ class MODNetResNet50Vd(nn.Layer):
pretrained(str, optional): The path of pretrianed model. Defautl: None.
pretrained(str, optional): The path of pretrianed model. Defautl: None.
"""
"""
def
__init__
(
self
,
hr_channels
:
int
=
32
,
pretrained
=
None
):
def
__init__
(
self
,
hr_channels
:
int
=
32
,
pretrained
=
None
):
super
(
MODNetResNet50Vd
,
self
).
__init__
()
super
(
MODNetResNet50Vd
,
self
).
__init__
()
self
.
backbone
=
ResNet50_vd
()
self
.
backbone
=
ResNet50_vd
()
self
.
pretrained
=
pretrained
self
.
pretrained
=
pretrained
self
.
head
=
MODNetHead
(
self
.
head
=
MODNetHead
(
hr_channels
=
hr_channels
,
backbone_channels
=
self
.
backbone
.
feat_channels
)
hr_channels
=
hr_channels
,
backbone_channels
=
self
.
backbone
.
feat_channels
)
self
.
blurer
=
GaussianBlurLayer
(
1
,
3
)
self
.
blurer
=
GaussianBlurLayer
(
1
,
3
)
self
.
transforms
=
P
.
Compose
([
P
.
LoadImages
(),
P
.
ResizeByShort
(),
P
.
ResizeToIntMult
(),
P
.
Normalize
()])
self
.
transforms
=
P
.
Compose
([
P
.
LoadImages
(),
P
.
ResizeByShort
(),
P
.
ResizeToIntMult
(),
P
.
Normalize
()])
...
@@ -73,14 +71,14 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -73,14 +71,14 @@ class MODNetResNet50Vd(nn.Layer):
self
.
set_dict
(
model_dict
)
self
.
set_dict
(
model_dict
)
print
(
"load pretrained parameters success"
)
print
(
"load pretrained parameters success"
)
def
preprocess
(
self
,
img
:
Union
[
str
,
np
.
ndarray
]
,
transforms
:
Callable
,
trimap
:
Union
[
str
,
np
.
ndarray
]
=
None
):
def
preprocess
(
self
,
img
:
Union
[
str
,
np
.
ndarray
],
transforms
:
Callable
,
trimap
:
Union
[
str
,
np
.
ndarray
]
=
None
):
data
=
{}
data
=
{}
data
[
'img'
]
=
img
data
[
'img'
]
=
img
if
trimap
is
not
None
:
if
trimap
is
not
None
:
data
[
'trimap'
]
=
trimap
data
[
'trimap'
]
=
trimap
data
[
'gt_fields'
]
=
[
'trimap'
]
data
[
'gt_fields'
]
=
[
'trimap'
]
data
[
'trans_info'
]
=
[]
data
[
'trans_info'
]
=
[]
data
=
self
.
transforms
(
data
)
data
=
transforms
(
data
)
data
[
'img'
]
=
paddle
.
to_tensor
(
data
[
'img'
])
data
[
'img'
]
=
paddle
.
to_tensor
(
data
[
'img'
])
data
[
'img'
]
=
data
[
'img'
].
unsqueeze
(
0
)
data
[
'img'
]
=
data
[
'img'
].
unsqueeze
(
0
)
if
trimap
is
not
None
:
if
trimap
is
not
None
:
...
@@ -95,9 +93,13 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -95,9 +93,13 @@ class MODNetResNet50Vd(nn.Layer):
y
=
self
.
head
(
inputs
=
inputs
,
feat_list
=
feat_list
)
y
=
self
.
head
(
inputs
=
inputs
,
feat_list
=
feat_list
)
return
y
return
y
def
predict
(
self
,
image_list
:
list
,
trimap_list
:
list
=
None
,
visualization
:
bool
=
False
,
save_path
:
str
=
"modnet_resnet50vd_matting_output"
):
def
predict
(
self
,
image_list
:
list
,
trimap_list
:
list
=
None
,
visualization
:
bool
=
False
,
save_path
:
str
=
"modnet_resnet50vd_matting_output"
):
self
.
eval
()
self
.
eval
()
result
=
[]
result
=
[]
with
paddle
.
no_grad
():
with
paddle
.
no_grad
():
for
i
,
im_path
in
enumerate
(
image_list
):
for
i
,
im_path
in
enumerate
(
image_list
):
trimap
=
trimap_list
[
i
]
if
trimap_list
is
not
None
else
None
trimap
=
trimap_list
[
i
]
if
trimap_list
is
not
None
else
None
...
@@ -118,7 +120,7 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -118,7 +120,7 @@ class MODNetResNet50Vd(nn.Layer):
return
result
return
result
@
serving
@
serving
def
serving_method
(
self
,
images
:
list
,
trimaps
:
list
=
None
,
**
kwargs
):
def
serving_method
(
self
,
images
:
list
,
trimaps
:
list
=
None
,
**
kwargs
):
"""
"""
Run as a service.
Run as a service.
"""
"""
...
@@ -128,7 +130,7 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -128,7 +130,7 @@ class MODNetResNet50Vd(nn.Layer):
else
:
else
:
trimap_decoder
=
None
trimap_decoder
=
None
outputs
=
self
.
predict
(
image_list
=
images_decode
,
trimap_list
=
trimap_decoder
,
**
kwargs
)
outputs
=
self
.
predict
(
image_list
=
images_decode
,
trimap_list
=
trimap_decoder
,
**
kwargs
)
serving_data
=
[
P
.
cv2_to_base64
(
outputs
[
i
])
for
i
in
range
(
len
(
outputs
))]
serving_data
=
[
P
.
cv2_to_base64
(
outputs
[
i
])
for
i
in
range
(
len
(
outputs
))]
results
=
{
'data'
:
serving_data
}
results
=
{
'data'
:
serving_data
}
...
@@ -139,8 +141,7 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -139,8 +141,7 @@ class MODNetResNet50Vd(nn.Layer):
"""
"""
Run as a command.
Run as a command.
"""
"""
self
.
parser
=
argparse
.
ArgumentParser
(
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
usage
=
'%(prog)s'
,
add_help
=
True
)
add_help
=
True
)
...
@@ -155,7 +156,10 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -155,7 +156,10 @@ class MODNetResNet50Vd(nn.Layer):
else
:
else
:
trimap_list
=
None
trimap_list
=
None
results
=
self
.
predict
(
image_list
=
[
args
.
input_path
],
trimap_list
=
trimap_list
,
save_path
=
args
.
output_dir
,
visualization
=
args
.
visualization
)
results
=
self
.
predict
(
image_list
=
[
args
.
input_path
],
trimap_list
=
trimap_list
,
save_path
=
args
.
output_dir
,
visualization
=
args
.
visualization
)
return
results
return
results
...
@@ -164,10 +168,14 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -164,10 +168,14 @@ class MODNetResNet50Vd(nn.Layer):
Add the command config options.
Add the command config options.
"""
"""
self
.
arg_config_group
.
add_argument
(
self
.
arg_config_group
.
add_argument
(
'--output_dir'
,
'--output_dir'
,
type
=
str
,
default
=
"modnet_resnet50vd_matting_output"
,
help
=
"The directory to save output images."
)
type
=
str
,
self
.
arg_config_group
.
add_argument
(
default
=
"modnet_resnet50vd_matting_output"
,
'--visualization'
,
type
=
bool
,
default
=
True
,
help
=
"whether to save output as images."
)
help
=
"The directory to save output images."
)
self
.
arg_config_group
.
add_argument
(
'--visualization'
,
type
=
bool
,
default
=
True
,
help
=
"whether to save output as images."
)
def
add_module_input_arg
(
self
):
def
add_module_input_arg
(
self
):
"""
"""
...
@@ -177,11 +185,11 @@ class MODNetResNet50Vd(nn.Layer):
...
@@ -177,11 +185,11 @@ class MODNetResNet50Vd(nn.Layer):
self
.
arg_input_group
.
add_argument
(
'--trimap_path'
,
type
=
str
,
default
=
None
,
help
=
"path to trimap."
)
self
.
arg_input_group
.
add_argument
(
'--trimap_path'
,
type
=
str
,
default
=
None
,
help
=
"path to trimap."
)
class
MODNetHead
(
nn
.
Layer
):
class
MODNetHead
(
nn
.
Layer
):
"""
"""
Segmentation head.
Segmentation head.
"""
"""
def
__init__
(
self
,
hr_channels
:
int
,
backbone_channels
:
int
):
def
__init__
(
self
,
hr_channels
:
int
,
backbone_channels
:
int
):
super
().
__init__
()
super
().
__init__
()
...
@@ -196,37 +204,24 @@ class MODNetHead(nn.Layer):
...
@@ -196,37 +204,24 @@ class MODNetHead(nn.Layer):
return
pred_matte
return
pred_matte
class
FusionBranch
(
nn
.
Layer
):
class
FusionBranch
(
nn
.
Layer
):
def
__init__
(
self
,
hr_channels
:
int
,
enc_channels
:
int
):
def
__init__
(
self
,
hr_channels
:
int
,
enc_channels
:
int
):
super
().
__init__
()
super
().
__init__
()
self
.
conv_lr4x
=
Conv2dIBNormRelu
(
self
.
conv_lr4x
=
Conv2dIBNormRelu
(
enc_channels
[
2
],
hr_channels
,
5
,
stride
=
1
,
padding
=
2
)
enc_channels
[
2
],
hr_channels
,
5
,
stride
=
1
,
padding
=
2
)
self
.
conv_f2x
=
Conv2dIBNormRelu
(
self
.
conv_f2x
=
Conv2dIBNormRelu
(
2
*
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
)
2
*
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
)
self
.
conv_f
=
nn
.
Sequential
(
self
.
conv_f
=
nn
.
Sequential
(
Conv2dIBNormRelu
(
Conv2dIBNormRelu
(
hr_channels
+
3
,
int
(
hr_channels
/
2
),
3
,
stride
=
1
,
padding
=
1
),
hr_channels
+
3
,
int
(
hr_channels
/
2
),
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
int
(
hr_channels
/
2
),
1
,
1
,
stride
=
1
,
padding
=
0
,
with_ibn
=
False
,
with_relu
=
False
))
Conv2dIBNormRelu
(
int
(
hr_channels
/
2
),
1
,
1
,
stride
=
1
,
padding
=
0
,
with_ibn
=
False
,
with_relu
=
False
))
def
forward
(
self
,
img
:
paddle
.
Tensor
,
lr8x
:
paddle
.
Tensor
,
hr2x
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
def
forward
(
self
,
img
:
paddle
.
Tensor
,
lr8x
:
paddle
.
Tensor
,
hr2x
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
lr4x
=
F
.
interpolate
(
lr4x
=
F
.
interpolate
(
lr8x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
lr8x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
lr4x
=
self
.
conv_lr4x
(
lr4x
)
lr4x
=
self
.
conv_lr4x
(
lr4x
)
lr2x
=
F
.
interpolate
(
lr2x
=
F
.
interpolate
(
lr4x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
lr4x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
f2x
=
self
.
conv_f2x
(
paddle
.
concat
((
lr2x
,
hr2x
),
axis
=
1
))
f2x
=
self
.
conv_f2x
(
paddle
.
concat
((
lr2x
,
hr2x
),
axis
=
1
))
f
=
F
.
interpolate
(
f
=
F
.
interpolate
(
f2x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
f2x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
f
=
self
.
conv_f
(
paddle
.
concat
((
f
,
img
),
axis
=
1
))
f
=
self
.
conv_f
(
paddle
.
concat
((
f
,
img
),
axis
=
1
))
pred_matte
=
F
.
sigmoid
(
f
)
pred_matte
=
F
.
sigmoid
(
f
)
...
@@ -238,56 +233,33 @@ class HRBranch(nn.Layer):
...
@@ -238,56 +233,33 @@ class HRBranch(nn.Layer):
High Resolution Branch of MODNet
High Resolution Branch of MODNet
"""
"""
def
__init__
(
self
,
hr_channels
:
int
,
enc_channels
:
int
):
def
__init__
(
self
,
hr_channels
:
int
,
enc_channels
:
int
):
super
().
__init__
()
super
().
__init__
()
self
.
tohr_enc2x
=
Conv2dIBNormRelu
(
self
.
tohr_enc2x
=
Conv2dIBNormRelu
(
enc_channels
[
0
],
hr_channels
,
1
,
stride
=
1
,
padding
=
0
)
enc_channels
[
0
],
hr_channels
,
1
,
stride
=
1
,
padding
=
0
)
self
.
conv_enc2x
=
Conv2dIBNormRelu
(
hr_channels
+
3
,
hr_channels
,
3
,
stride
=
2
,
padding
=
1
)
self
.
conv_enc2x
=
Conv2dIBNormRelu
(
hr_channels
+
3
,
hr_channels
,
3
,
stride
=
2
,
padding
=
1
)
self
.
tohr_enc4x
=
Conv2dIBNormRelu
(
self
.
tohr_enc4x
=
Conv2dIBNormRelu
(
enc_channels
[
1
],
hr_channels
,
1
,
stride
=
1
,
padding
=
0
)
enc_channels
[
1
],
hr_channels
,
1
,
stride
=
1
,
padding
=
0
)
self
.
conv_enc4x
=
Conv2dIBNormRelu
(
2
*
hr_channels
,
2
*
hr_channels
,
3
,
stride
=
1
,
padding
=
1
)
self
.
conv_enc4x
=
Conv2dIBNormRelu
(
2
*
hr_channels
,
2
*
hr_channels
,
3
,
stride
=
1
,
padding
=
1
)
self
.
conv_hr4x
=
nn
.
Sequential
(
self
.
conv_hr4x
=
nn
.
Sequential
(
Conv2dIBNormRelu
(
Conv2dIBNormRelu
(
2
*
hr_channels
+
enc_channels
[
2
]
+
3
,
2
*
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
2
*
hr_channels
+
enc_channels
[
2
]
+
3
,
Conv2dIBNormRelu
(
2
*
hr_channels
,
2
*
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
2
*
hr_channels
,
Conv2dIBNormRelu
(
2
*
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
))
3
,
stride
=
1
,
self
.
conv_hr2x
=
nn
.
Sequential
(
Conv2dIBNormRelu
(
2
*
hr_channels
,
2
*
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
padding
=
1
),
Conv2dIBNormRelu
(
2
*
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
2
*
hr_channels
,
2
*
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
2
*
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
))
self
.
conv_hr2x
=
nn
.
Sequential
(
Conv2dIBNormRelu
(
2
*
hr_channels
,
2
*
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
2
*
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
))
Conv2dIBNormRelu
(
hr_channels
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
))
self
.
conv_hr
=
nn
.
Sequential
(
self
.
conv_hr
=
nn
.
Sequential
(
Conv2dIBNormRelu
(
Conv2dIBNormRelu
(
hr_channels
+
3
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
hr_channels
+
3
,
hr_channels
,
3
,
stride
=
1
,
padding
=
1
),
Conv2dIBNormRelu
(
hr_channels
,
1
,
1
,
stride
=
1
,
padding
=
0
,
with_ibn
=
False
,
with_relu
=
False
))
Conv2dIBNormRelu
(
hr_channels
,
1
,
1
,
stride
=
1
,
padding
=
0
,
with_ibn
=
False
,
with_relu
=
False
))
def
forward
(
self
,
img
:
paddle
.
Tensor
,
enc2x
:
paddle
.
Tensor
,
enc4x
:
paddle
.
Tensor
,
lr8x
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
def
forward
(
self
,
img
:
paddle
.
Tensor
,
enc2x
:
paddle
.
Tensor
,
enc4x
:
paddle
.
Tensor
,
img2x
=
F
.
interpolate
(
lr8x
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
img
,
scale_factor
=
1
/
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
img2x
=
F
.
interpolate
(
img
,
scale_factor
=
1
/
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
img4x
=
F
.
interpolate
(
img4x
=
F
.
interpolate
(
img
,
scale_factor
=
1
/
4
,
mode
=
'bilinear'
,
align_corners
=
False
)
img
,
scale_factor
=
1
/
4
,
mode
=
'bilinear'
,
align_corners
=
False
)
enc2x
=
self
.
tohr_enc2x
(
enc2x
)
enc2x
=
self
.
tohr_enc2x
(
enc2x
)
hr4x
=
self
.
conv_enc2x
(
paddle
.
concat
((
img2x
,
enc2x
),
axis
=
1
))
hr4x
=
self
.
conv_enc2x
(
paddle
.
concat
((
img2x
,
enc2x
),
axis
=
1
))
...
@@ -295,12 +267,10 @@ class HRBranch(nn.Layer):
...
@@ -295,12 +267,10 @@ class HRBranch(nn.Layer):
enc4x
=
self
.
tohr_enc4x
(
enc4x
)
enc4x
=
self
.
tohr_enc4x
(
enc4x
)
hr4x
=
self
.
conv_enc4x
(
paddle
.
concat
((
hr4x
,
enc4x
),
axis
=
1
))
hr4x
=
self
.
conv_enc4x
(
paddle
.
concat
((
hr4x
,
enc4x
),
axis
=
1
))
lr4x
=
F
.
interpolate
(
lr4x
=
F
.
interpolate
(
lr8x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
lr8x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
hr4x
=
self
.
conv_hr4x
(
paddle
.
concat
((
hr4x
,
lr4x
,
img4x
),
axis
=
1
))
hr4x
=
self
.
conv_hr4x
(
paddle
.
concat
((
hr4x
,
lr4x
,
img4x
),
axis
=
1
))
hr2x
=
F
.
interpolate
(
hr2x
=
F
.
interpolate
(
hr4x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
hr4x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
hr2x
=
self
.
conv_hr2x
(
paddle
.
concat
((
hr2x
,
enc2x
),
axis
=
1
))
hr2x
=
self
.
conv_hr2x
(
paddle
.
concat
((
hr2x
,
enc2x
),
axis
=
1
))
pred_detail
=
None
pred_detail
=
None
return
pred_detail
,
hr2x
return
pred_detail
,
hr2x
...
@@ -310,15 +280,13 @@ class LRBranch(nn.Layer):
...
@@ -310,15 +280,13 @@ class LRBranch(nn.Layer):
"""
"""
Low Resolution Branch of MODNet
Low Resolution Branch of MODNet
"""
"""
def
__init__
(
self
,
backbone_channels
:
int
):
def
__init__
(
self
,
backbone_channels
:
int
):
super
().
__init__
()
super
().
__init__
()
self
.
se_block
=
SEBlock
(
backbone_channels
[
4
],
reduction
=
4
)
self
.
se_block
=
SEBlock
(
backbone_channels
[
4
],
reduction
=
4
)
self
.
conv_lr16x
=
Conv2dIBNormRelu
(
self
.
conv_lr16x
=
Conv2dIBNormRelu
(
backbone_channels
[
4
],
backbone_channels
[
3
],
5
,
stride
=
1
,
padding
=
2
)
backbone_channels
[
4
],
backbone_channels
[
3
],
5
,
stride
=
1
,
padding
=
2
)
self
.
conv_lr8x
=
Conv2dIBNormRelu
(
backbone_channels
[
3
],
backbone_channels
[
2
],
5
,
stride
=
1
,
padding
=
2
)
self
.
conv_lr8x
=
Conv2dIBNormRelu
(
self
.
conv_lr
=
Conv2dIBNormRelu
(
backbone_channels
[
2
],
backbone_channels
[
3
],
backbone_channels
[
2
],
5
,
stride
=
1
,
padding
=
2
)
self
.
conv_lr
=
Conv2dIBNormRelu
(
backbone_channels
[
2
],
1
,
1
,
3
,
3
,
stride
=
2
,
stride
=
2
,
...
@@ -330,11 +298,9 @@ class LRBranch(nn.Layer):
...
@@ -330,11 +298,9 @@ class LRBranch(nn.Layer):
enc2x
,
enc4x
,
enc32x
=
feat_list
[
0
],
feat_list
[
1
],
feat_list
[
4
]
enc2x
,
enc4x
,
enc32x
=
feat_list
[
0
],
feat_list
[
1
],
feat_list
[
4
]
enc32x
=
self
.
se_block
(
enc32x
)
enc32x
=
self
.
se_block
(
enc32x
)
lr16x
=
F
.
interpolate
(
lr16x
=
F
.
interpolate
(
enc32x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
enc32x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
lr16x
=
self
.
conv_lr16x
(
lr16x
)
lr16x
=
self
.
conv_lr16x
(
lr16x
)
lr8x
=
F
.
interpolate
(
lr8x
=
F
.
interpolate
(
lr16x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
lr16x
,
scale_factor
=
2
,
mode
=
'bilinear'
,
align_corners
=
False
)
lr8x
=
self
.
conv_lr8x
(
lr8x
)
lr8x
=
self
.
conv_lr8x
(
lr8x
)
pred_semantic
=
None
pred_semantic
=
None
...
@@ -376,7 +342,7 @@ class Conv2dIBNormRelu(nn.Layer):
...
@@ -376,7 +342,7 @@ class Conv2dIBNormRelu(nn.Layer):
kernel_size
:
int
,
kernel_size
:
int
,
stride
:
int
=
1
,
stride
:
int
=
1
,
padding
:
int
=
0
,
padding
:
int
=
0
,
dilation
:
int
=
1
,
dilation
:
int
=
1
,
groups
:
int
=
1
,
groups
:
int
=
1
,
bias_attr
:
paddle
.
ParamAttr
=
None
,
bias_attr
:
paddle
.
ParamAttr
=
None
,
with_ibn
:
bool
=
True
,
with_ibn
:
bool
=
True
,
...
@@ -385,8 +351,7 @@ class Conv2dIBNormRelu(nn.Layer):
...
@@ -385,8 +351,7 @@ class Conv2dIBNormRelu(nn.Layer):
super
().
__init__
()
super
().
__init__
()
layers
=
[
layers
=
[
nn
.
Conv2D
(
nn
.
Conv2D
(
in_channels
,
in_channels
,
out_channels
,
out_channels
,
kernel_size
,
kernel_size
,
stride
=
stride
,
stride
=
stride
,
...
@@ -413,20 +378,13 @@ class SEBlock(nn.Layer):
...
@@ -413,20 +378,13 @@ class SEBlock(nn.Layer):
SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
"""
"""
def
__init__
(
self
,
num_channels
:
int
,
reduction
:
int
=
1
):
def
__init__
(
self
,
num_channels
:
int
,
reduction
:
int
=
1
):
super
().
__init__
()
super
().
__init__
()
self
.
pool
=
nn
.
AdaptiveAvgPool2D
(
1
)
self
.
pool
=
nn
.
AdaptiveAvgPool2D
(
1
)
self
.
conv
=
nn
.
Sequential
(
self
.
conv
=
nn
.
Sequential
(
nn
.
Conv2D
(
num_channels
,
int
(
num_channels
//
reduction
),
1
,
nn
.
Conv2D
(
num_channels
,
int
(
num_channels
//
reduction
),
1
,
bias_attr
=
False
),
nn
.
ReLU
(),
bias_attr
=
False
),
nn
.
ReLU
(),
nn
.
Conv2D
(
nn
.
Conv2D
(
int
(
num_channels
//
reduction
),
num_channels
,
1
,
bias_attr
=
False
),
int
(
num_channels
//
reduction
),
nn
.
Sigmoid
())
num_channels
,
1
,
bias_attr
=
False
),
nn
.
Sigmoid
())
def
forward
(
self
,
x
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
def
forward
(
self
,
x
:
paddle
.
Tensor
)
->
paddle
.
Tensor
:
w
=
self
.
pool
(
x
)
w
=
self
.
pool
(
x
)
...
@@ -454,14 +412,7 @@ class GaussianBlurLayer(nn.Layer):
...
@@ -454,14 +412,7 @@ class GaussianBlurLayer(nn.Layer):
self
.
op
=
nn
.
Sequential
(
self
.
op
=
nn
.
Sequential
(
nn
.
Pad2D
(
int
(
self
.
kernel_size
/
2
),
mode
=
'reflect'
),
nn
.
Pad2D
(
int
(
self
.
kernel_size
/
2
),
mode
=
'reflect'
),
nn
.
Conv2D
(
nn
.
Conv2D
(
channels
,
channels
,
self
.
kernel_size
,
stride
=
1
,
padding
=
0
,
bias_attr
=
False
,
groups
=
channels
))
channels
,
channels
,
self
.
kernel_size
,
stride
=
1
,
padding
=
0
,
bias_attr
=
False
,
groups
=
channels
))
self
.
_init_kernel
()
self
.
_init_kernel
()
self
.
op
[
1
].
weight
.
stop_gradient
=
True
self
.
op
[
1
].
weight
.
stop_gradient
=
True
...
@@ -479,8 +430,7 @@ class GaussianBlurLayer(nn.Layer):
...
@@ -479,8 +430,7 @@ class GaussianBlurLayer(nn.Layer):
exit
()
exit
()
elif
not
x
.
shape
[
1
]
==
self
.
channels
:
elif
not
x
.
shape
[
1
]
==
self
.
channels
:
print
(
'In
\'
GaussianBlurLayer
\'
, the required channel ({0}) is'
print
(
'In
\'
GaussianBlurLayer
\'
, the required channel ({0}) is'
'not the same as input ({1})
\n
'
.
format
(
'not the same as input ({1})
\n
'
.
format
(
self
.
channels
,
x
.
shape
[
1
]))
self
.
channels
,
x
.
shape
[
1
]))
exit
()
exit
()
return
self
.
op
(
x
)
return
self
.
op
(
x
)
...
...
modules/image/matting/modnet_resnet50vd_matting/processor.py
浏览文件 @
1b5a1e26
...
@@ -11,17 +11,17 @@
...
@@ -11,17 +11,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
random
import
base64
import
base64
from
typing
import
Callable
,
Union
,
List
,
Tuple
from
typing
import
Callable
from
typing
import
List
from
typing
import
Tuple
from
typing
import
Union
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
from
paddleseg.transforms
import
functional
from
paddleseg.transforms
import
functional
from
PIL
import
Image
class
Compose
:
class
Compose
:
...
@@ -61,6 +61,7 @@ class LoadImages:
...
@@ -61,6 +61,7 @@ class LoadImages:
Args:
Args:
to_rgb (bool, optional): If converting image to RGB color space. Default: True.
to_rgb (bool, optional): If converting image to RGB color space. Default: True.
"""
"""
def
__init__
(
self
,
to_rgb
:
bool
=
True
):
def
__init__
(
self
,
to_rgb
:
bool
=
True
):
self
.
to_rgb
=
to_rgb
self
.
to_rgb
=
to_rgb
...
@@ -95,7 +96,7 @@ class ResizeByShort:
...
@@ -95,7 +96,7 @@ class ResizeByShort:
short_size (int): The target size of short side.
short_size (int): The target size of short side.
"""
"""
def
__init__
(
self
,
short_size
:
int
=
512
):
def
__init__
(
self
,
short_size
:
int
=
512
):
self
.
short_size
=
short_size
self
.
short_size
=
short_size
def
__call__
(
self
,
data
:
dict
)
->
dict
:
def
__call__
(
self
,
data
:
dict
)
->
dict
:
...
@@ -140,14 +141,13 @@ class Normalize:
...
@@ -140,14 +141,13 @@ class Normalize:
ValueError: When mean/std is not list or any value in std is 0.
ValueError: When mean/std is not list or any value in std is 0.
"""
"""
def
__init__
(
self
,
mean
:
Union
[
List
[
float
],
Tuple
[
float
]]
=
(
0.5
,
0.5
,
0.5
),
std
:
Union
[
List
[
float
],
Tuple
[
float
]]
=
(
0.5
,
0.5
,
0.5
)):
def
__init__
(
self
,
mean
:
Union
[
List
[
float
],
Tuple
[
float
]]
=
(
0.5
,
0.5
,
0.5
),
std
:
Union
[
List
[
float
],
Tuple
[
float
]]
=
(
0.5
,
0.5
,
0.5
)):
self
.
mean
=
mean
self
.
mean
=
mean
self
.
std
=
std
self
.
std
=
std
if
not
(
isinstance
(
self
.
mean
,
(
list
,
tuple
))
if
not
(
isinstance
(
self
.
mean
,
(
list
,
tuple
))
and
isinstance
(
self
.
std
,
(
list
,
tuple
))):
and
isinstance
(
self
.
std
,
(
list
,
tuple
))):
raise
ValueError
(
"{}: input type is invalid. It should be list or tuple"
.
format
(
self
))
raise
ValueError
(
"{}: input type is invalid. It should be list or tuple"
.
format
(
self
))
from
functools
import
reduce
from
functools
import
reduce
if
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
std
)
==
0
:
if
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
std
)
==
0
:
raise
ValueError
(
'{}: std is invalid!'
.
format
(
self
))
raise
ValueError
(
'{}: std is invalid!'
.
format
(
self
))
...
@@ -177,6 +177,7 @@ def reverse_transform(alpha: paddle.Tensor, trans_info: List[str]):
...
@@ -177,6 +177,7 @@ def reverse_transform(alpha: paddle.Tensor, trans_info: List[str]):
raise
Exception
(
"Unexpected info '{}' in im_info"
.
format
(
item
[
0
]))
raise
Exception
(
"Unexpected info '{}' in im_info"
.
format
(
item
[
0
]))
return
alpha
return
alpha
def
save_alpha_pred
(
alpha
:
np
.
ndarray
,
trimap
:
np
.
ndarray
=
None
):
def
save_alpha_pred
(
alpha
:
np
.
ndarray
,
trimap
:
np
.
ndarray
=
None
):
"""
"""
The value of alpha is range [0, 1], shape should be [h,w]
The value of alpha is range [0, 1], shape should be [h,w]
...
...
modules/image/matting/modnet_resnet50vd_matting/requirements.txt
0 → 100644
浏览文件 @
1b5a1e26
paddleseg>=2.3.0
modules/image/matting/modnet_resnet50vd_matting/resnet.py
浏览文件 @
1b5a1e26
...
@@ -11,13 +11,10 @@
...
@@ -11,13 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
from
paddleseg.models
import
layers
from
paddleseg.models
import
layers
from
paddleseg.utils
import
utils
__all__
=
[
"ResNet50_vd"
]
__all__
=
[
"ResNet50_vd"
]
...
@@ -39,10 +36,8 @@ class ConvBNLayer(nn.Layer):
...
@@ -39,10 +36,8 @@ class ConvBNLayer(nn.Layer):
super
(
ConvBNLayer
,
self
).
__init__
()
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
nn
.
AvgPool2D
(
self
.
_pool2d_avg
=
nn
.
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
self
.
_conv
=
nn
.
Conv2D
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
kernel_size
=
kernel_size
,
stride
=
stride
,
stride
=
stride
,
...
@@ -76,30 +71,20 @@ class BottleneckBlock(nn.Layer):
...
@@ -76,30 +71,20 @@ class BottleneckBlock(nn.Layer):
dilation
:
int
=
1
):
dilation
:
int
=
1
):
super
(
BottleneckBlock
,
self
).
__init__
()
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
self
.
conv0
=
ConvBNLayer
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
,
act
=
'relu'
)
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
,
act
=
'relu'
)
self
.
dilation
=
dilation
self
.
dilation
=
dilation
self
.
conv1
=
ConvBNLayer
(
self
.
conv1
=
ConvBNLayer
(
in_channels
=
out_channels
,
in_channels
=
out_channels
,
out_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
dilation
=
dilation
)
dilation
=
dilation
)
self
.
conv2
=
ConvBNLayer
(
self
.
conv2
=
ConvBNLayer
(
in_channels
=
out_channels
,
out_channels
=
out_channels
*
4
,
kernel_size
=
1
,
act
=
None
)
in_channels
=
out_channels
,
out_channels
=
out_channels
*
4
,
kernel_size
=
1
,
act
=
None
)
if
not
shortcut
:
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
short
=
ConvBNLayer
(
in_channels
=
in_channels
,
in_channels
=
in_channels
,
out_channels
=
out_channels
*
4
,
out_channels
=
out_channels
*
4
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
...
@@ -133,29 +118,19 @@ class BottleneckBlock(nn.Layer):
...
@@ -133,29 +118,19 @@ class BottleneckBlock(nn.Layer):
class
BasicBlock
(
nn
.
Layer
):
class
BasicBlock
(
nn
.
Layer
):
"""Basic residual block"""
"""Basic residual block"""
def
__init__
(
self
,
in_channels
:
int
,
def
__init__
(
self
,
in_channels
:
int
,
out_channels
:
int
,
stride
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
):
out_channels
:
int
,
stride
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
):
super
(
BasicBlock
,
self
).
__init__
()
super
(
BasicBlock
,
self
).
__init__
()
self
.
stride
=
stride
self
.
stride
=
stride
self
.
conv0
=
ConvBNLayer
(
self
.
conv0
=
ConvBNLayer
(
in_channels
=
in_channels
,
in_channels
=
in_channels
,
out_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
kernel_size
=
3
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
)
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
self
.
conv1
=
ConvBNLayer
(
in_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
act
=
None
)
in_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
act
=
None
)
if
not
shortcut
:
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
short
=
ConvBNLayer
(
in_channels
=
in_channels
,
in_channels
=
in_channels
,
out_channels
=
out_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
,
kernel_size
=
1
,
stride
=
1
,
stride
=
1
,
...
@@ -212,13 +187,11 @@ class ResNet_vd(nn.Layer):
...
@@ -212,13 +187,11 @@ class ResNet_vd(nn.Layer):
depth
=
[
3
,
8
,
36
,
3
]
depth
=
[
3
,
8
,
36
,
3
]
elif
layers
==
200
:
elif
layers
==
200
:
depth
=
[
3
,
12
,
48
,
3
]
depth
=
[
3
,
12
,
48
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
num_channels
=
[
64
,
256
,
512
,
1024
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
num_filters
=
[
64
,
128
,
256
,
512
]
num_filters
=
[
64
,
128
,
256
,
512
]
# for channels of four returned stages
# for channels of four returned stages
self
.
feat_channels
=
[
c
*
4
for
c
in
num_filters
self
.
feat_channels
=
[
c
*
4
for
c
in
num_filters
]
if
layers
>=
50
else
num_filters
]
if
layers
>=
50
else
num_filters
self
.
feat_channels
=
[
64
]
+
self
.
feat_channels
self
.
feat_channels
=
[
64
]
+
self
.
feat_channels
dilation_dict
=
None
dilation_dict
=
None
...
@@ -227,24 +200,9 @@ class ResNet_vd(nn.Layer):
...
@@ -227,24 +200,9 @@ class ResNet_vd(nn.Layer):
elif
output_stride
==
16
:
elif
output_stride
==
16
:
dilation_dict
=
{
3
:
2
}
dilation_dict
=
{
3
:
2
}
self
.
conv1_1
=
ConvBNLayer
(
self
.
conv1_1
=
ConvBNLayer
(
in_channels
=
input_channels
,
out_channels
=
32
,
kernel_size
=
3
,
stride
=
2
,
act
=
'relu'
)
in_channels
=
input_channels
,
self
.
conv1_2
=
ConvBNLayer
(
in_channels
=
32
,
out_channels
=
32
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
)
out_channels
=
32
,
self
.
conv1_3
=
ConvBNLayer
(
in_channels
=
32
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
)
kernel_size
=
3
,
stride
=
2
,
act
=
'relu'
)
self
.
conv1_2
=
ConvBNLayer
(
in_channels
=
32
,
out_channels
=
32
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
)
self
.
conv1_3
=
ConvBNLayer
(
in_channels
=
32
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
act
=
'relu'
)
self
.
pool2d_max
=
nn
.
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
pool2d_max
=
nn
.
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
# self.block_list = []
# self.block_list = []
...
@@ -264,8 +222,7 @@ class ResNet_vd(nn.Layer):
...
@@ -264,8 +222,7 @@ class ResNet_vd(nn.Layer):
###############################################################################
###############################################################################
# Add dilation rate for some segmentation tasks, if dilation_dict is not None.
# Add dilation rate for some segmentation tasks, if dilation_dict is not None.
dilation_rate
=
dilation_dict
[
dilation_rate
=
dilation_dict
[
block
]
if
dilation_dict
and
block
in
dilation_dict
else
1
block
]
if
dilation_dict
and
block
in
dilation_dict
else
1
# Actually block here is 'stage', and i is 'block' in 'stage'
# Actually block here is 'stage', and i is 'block' in 'stage'
# At the stage 4, expand the the dilation_rate if given multi_grid
# At the stage 4, expand the the dilation_rate if given multi_grid
...
@@ -275,12 +232,9 @@ class ResNet_vd(nn.Layer):
...
@@ -275,12 +232,9 @@ class ResNet_vd(nn.Layer):
bottleneck_block
=
self
.
add_sublayer
(
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
BottleneckBlock
(
in_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
in_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
out_channels
=
num_filters
[
block
],
out_channels
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
stride
=
2
if
i
==
0
and
block
!=
0
and
dilation_rate
==
1
else
1
,
and
dilation_rate
==
1
else
1
,
shortcut
=
shortcut
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
if_first
=
block
==
i
==
0
,
dilation
=
dilation_rate
))
dilation
=
dilation_rate
))
...
@@ -296,9 +250,7 @@ class ResNet_vd(nn.Layer):
...
@@ -296,9 +250,7 @@ class ResNet_vd(nn.Layer):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
basic_block
=
self
.
add_sublayer
(
basic_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
'bb_%d_%d'
%
(
block
,
i
),
BasicBlock
(
BasicBlock
(
in_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
],
in_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
],
out_channels
=
num_filters
[
block
],
out_channels
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
shortcut
=
shortcut
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录