predict.py 3.3 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#coding:utf-8
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import ast
import numpy as np
import os
import time

import paddle
import paddle.fluid as fluid
import paddlehub as hub

import pandas as pd

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint")
parser.add_argument("--batch_size",     type=int,   default=1, help="Total examples' number in batch for training.")
parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.")
parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False")
args = parser.parse_args()
# yapf: enable.

if __name__ == '__main__':
K
kinghuin 已提交
43
    # Load Paddlehub ERNIE 2.0 pretrained model
K
kinghuin 已提交
44
    module = hub.Module(name="ernie_v2_eng_base")
K
kinghuin 已提交
45 46
    inputs, outputs, program = module.context(
        trainable=True, max_seq_len=args.max_seq_len)
47

K
kinghuin 已提交
48 49 50 51 52 53 54
    # Download dataset and use MultiLabelReader to read dataset
    dataset = hub.dataset.Toxic()
    reader = hub.reader.MultiLabelClassifyReader(
        dataset=dataset,
        vocab_path=module.get_vocab_path(),
        max_seq_len=args.max_seq_len)

K
kinghuin 已提交
55 56 57 58 59 60 61
    # Setup feed list for data feeder
    feed_list = [
        inputs["input_ids"].name,
        inputs["position_ids"].name,
        inputs["segment_ids"].name,
        inputs["input_mask"].name,
    ]
62

S
Steffy-zxf 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    # Construct transfer learning network
    # Use "pooled_output" for classification tasks on an entire sentence.
    # Use "sequence_output" for token-level output.
    pooled_output = outputs["pooled_output"]

    # Setup runing config for PaddleHub Finetune API
    config = hub.RunConfig(
        use_data_parallel=False,
        use_cuda=args.use_gpu,
        batch_size=args.batch_size,
        checkpoint_dir=args.checkpoint_dir,
        strategy=hub.finetune.strategy.DefaultFinetuneStrategy())

    # Define a classfication finetune task by PaddleHub's API
    multi_label_cls_task = hub.MultiLabelClassifierTask(
        data_reader=reader,
        feature=pooled_output,
        feed_list=feed_list,
        num_classes=dataset.num_labels,
        config=config)

K
kinghuin 已提交
84
    # Data to be predicted
S
Steffy-zxf 已提交
85 86 87 88 89 90 91 92 93
    data = [
        [
            "Yes you did. And you admitted to doing it. See the Warren Kinsella talk page."
        ],
        [
            "I asked you a question. We both know you have my page on your watch list, so are why are you playing games and making me formally ping you?  Makin'Bacon"
        ],
    ]

K
kinghuin 已提交
94
    print(multi_label_cls_task.predict(data=data, return_result=True))