fpn.py 9.8 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.regularizer import L2Decay

__all__ = ['FPN']


def ConvNorm(input,
             num_filters,
             filter_size,
             stride=1,
             groups=1,
             norm_decay=0.,
             norm_type='affine_channel',
             norm_groups=32,
             dilation=1,
             lr_scale=1,
             freeze_norm=False,
             act=None,
             norm_name=None,
             initializer=None,
             name=None):
    fan = num_filters
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=((filter_size - 1) // 2) * dilation,
        dilation=dilation,
        groups=groups,
        act=None,
W
wuzewu 已提交
42
        param_attr=ParamAttr(name=name + "_weights", initializer=initializer, learning_rate=lr_scale),
W
wuzewu 已提交
43 44 45
        bias_attr=False,
        name=name + '.conv2d.output.1')
    norm_lr = 0. if freeze_norm else 1.
W
wuzewu 已提交
46 47
    pattr = ParamAttr(name=norm_name + '_scale', learning_rate=norm_lr * lr_scale, regularizer=L2Decay(norm_decay))
    battr = ParamAttr(name=norm_name + '_offset', learning_rate=norm_lr * lr_scale, regularizer=L2Decay(norm_decay))
W
wuzewu 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    if norm_type in ['bn', 'sync_bn']:
        global_stats = True if freeze_norm else False
        out = fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=norm_name + '.output.1',
            param_attr=pattr,
            bias_attr=battr,
            moving_mean_name=norm_name + '_mean',
            moving_variance_name=norm_name + '_variance',
            use_global_stats=global_stats)
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
    elif norm_type == 'gn':
        out = fluid.layers.group_norm(
W
wuzewu 已提交
63
            input=conv, act=act, name=norm_name + '.output.1', groups=norm_groups, param_attr=pattr, bias_attr=battr)
W
wuzewu 已提交
64 65 66 67
        scale = fluid.framework._get_var(pattr.name)
        bias = fluid.framework._get_var(battr.name)
    elif norm_type == 'affine_channel':
        scale = fluid.layers.create_parameter(
W
wuzewu 已提交
68
            shape=[conv.shape[1]], dtype=conv.dtype, attr=pattr, default_initializer=fluid.initializer.Constant(1.))
W
wuzewu 已提交
69
        bias = fluid.layers.create_parameter(
W
wuzewu 已提交
70 71
            shape=[conv.shape[1]], dtype=conv.dtype, attr=battr, default_initializer=fluid.initializer.Constant(0.))
        out = fluid.layers.affine_channel(x=conv, scale=scale, bias=bias, act=act)
W
wuzewu 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    if freeze_norm:
        scale.stop_gradient = True
        bias.stop_gradient = True
    return out


class FPN(object):
    """
    Feature Pyramid Network, see https://arxiv.org/abs/1612.03144

    Args:
        num_chan (int): number of feature channels
        min_level (int): lowest level of the backbone feature map to use
        max_level (int): highest level of the backbone feature map to use
        spatial_scale (list): feature map scaling factor
        has_extra_convs (bool): whether has extral convolutions in higher levels
        norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
    """
    __shared__ = ['norm_type', 'freeze_norm']

    def __init__(self,
                 num_chan=256,
                 min_level=2,
                 max_level=6,
                 spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
                 has_extra_convs=False,
                 norm_type=None,
                 freeze_norm=False):
        self.freeze_norm = freeze_norm
        self.num_chan = num_chan
        self.min_level = min_level
        self.max_level = max_level
        self.spatial_scale = spatial_scale
        self.has_extra_convs = has_extra_convs
        self.norm_type = norm_type

    def _add_topdown_lateral(self, body_name, body_input, upper_output):
        lateral_name = 'fpn_inner_' + body_name + '_lateral'
        topdown_name = 'fpn_topdown_' + body_name
        fan = body_input.shape[1]
        if self.norm_type:
            initializer = Xavier(fan_out=fan)
            lateral = ConvNorm(
                body_input,
                self.num_chan,
                1,
                initializer=initializer,
                norm_type=self.norm_type,
                freeze_norm=self.freeze_norm,
                name=lateral_name,
                norm_name=lateral_name)
        else:
            lateral = fluid.layers.conv2d(
                body_input,
                self.num_chan,
                1,
W
wuzewu 已提交
128 129
                param_attr=ParamAttr(name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
                bias_attr=ParamAttr(name=lateral_name + "_b", learning_rate=2., regularizer=L2Decay(0.)),
W
wuzewu 已提交
130
                name=lateral_name)
W
wuzewu 已提交
131
        topdown = fluid.layers.resize_nearest(upper_output, scale=2., name=topdown_name)
W
wuzewu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        return lateral + topdown

    def get_output(self, body_dict):
        """
        Add FPN onto backbone.

        Args:
            body_dict(OrderedDict): Dictionary of variables and each element is the
                output of backbone.

        Return:
            fpn_dict(OrderedDict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.
        """
        spatial_scale = copy.deepcopy(self.spatial_scale)
        body_name_list = list(body_dict.keys())[::-1]
        num_backbone_stages = len(body_name_list)
        self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
        fpn_inner_name = 'fpn_inner_' + body_name_list[0]
        body_input = body_dict[body_name_list[0]]
        fan = body_input.shape[1]
        if self.norm_type:
            initializer = Xavier(fan_out=fan)
            self.fpn_inner_output[0] = ConvNorm(
                body_input,
                self.num_chan,
                1,
                initializer=initializer,
                norm_type=self.norm_type,
                freeze_norm=self.freeze_norm,
                name=fpn_inner_name,
                norm_name=fpn_inner_name)
        else:
            self.fpn_inner_output[0] = fluid.layers.conv2d(
                body_input,
                self.num_chan,
                1,
W
wuzewu 已提交
171 172
                param_attr=ParamAttr(name=fpn_inner_name + "_w", initializer=Xavier(fan_out=fan)),
                bias_attr=ParamAttr(name=fpn_inner_name + "_b", learning_rate=2., regularizer=L2Decay(0.)),
W
wuzewu 已提交
173 174 175 176 177
                name=fpn_inner_name)
        for i in range(1, num_backbone_stages):
            body_name = body_name_list[i]
            body_input = body_dict[body_name]
            top_output = self.fpn_inner_output[i - 1]
W
wuzewu 已提交
178
            fpn_inner_single = self._add_topdown_lateral(body_name, body_input, top_output)
W
wuzewu 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            self.fpn_inner_output[i] = fpn_inner_single
        fpn_dict = {}
        fpn_name_list = []
        for i in range(num_backbone_stages):
            fpn_name = 'fpn_' + body_name_list[i]
            fan = self.fpn_inner_output[i].shape[1] * 3 * 3
            if self.norm_type:
                initializer = Xavier(fan_out=fan)
                fpn_output = ConvNorm(
                    self.fpn_inner_output[i],
                    self.num_chan,
                    3,
                    initializer=initializer,
                    norm_type=self.norm_type,
                    freeze_norm=self.freeze_norm,
                    name=fpn_name,
                    norm_name=fpn_name)
            else:
                fpn_output = fluid.layers.conv2d(
                    self.fpn_inner_output[i],
                    self.num_chan,
                    filter_size=3,
                    padding=1,
W
wuzewu 已提交
202 203
                    param_attr=ParamAttr(name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                    bias_attr=ParamAttr(name=fpn_name + "_b", learning_rate=2., regularizer=L2Decay(0.)),
W
wuzewu 已提交
204 205 206
                    name=fpn_name)
            fpn_dict[fpn_name] = fpn_output
            fpn_name_list.append(fpn_name)
W
wuzewu 已提交
207
        if not self.has_extra_convs and self.max_level - self.min_level == len(spatial_scale):
W
wuzewu 已提交
208 209
            body_top_name = fpn_name_list[0]
            body_top_extension = fluid.layers.pool2d(
W
wuzewu 已提交
210
                fpn_dict[body_top_name], 1, 'max', pool_stride=2, name=body_top_name + '_subsampled_2x')
W
wuzewu 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
            fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
            spatial_scale.insert(0, spatial_scale[0] * 0.5)
        # Coarser FPN levels introduced for RetinaNet
        highest_backbone_level = self.min_level + len(spatial_scale) - 1
        if self.has_extra_convs and self.max_level > highest_backbone_level:
            fpn_blob = body_dict[body_name_list[0]]
            for i in range(highest_backbone_level + 1, self.max_level + 1):
                fpn_blob_in = fpn_blob
                fpn_name = 'fpn_' + str(i)
                if i > highest_backbone_level + 1:
                    fpn_blob_in = fluid.layers.relu(fpn_blob)
                fan = fpn_blob_in.shape[1] * 3 * 3
                fpn_blob = fluid.layers.conv2d(
                    input=fpn_blob_in,
                    num_filters=self.num_chan,
                    filter_size=3,
                    stride=2,
                    padding=1,
W
wuzewu 已提交
230 231
                    param_attr=ParamAttr(name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                    bias_attr=ParamAttr(name=fpn_name + "_b", learning_rate=2., regularizer=L2Decay(0.)),
W
wuzewu 已提交
232 233 234 235 236 237
                    name=fpn_name)
                fpn_dict[fpn_name] = fpn_blob
                fpn_name_list.insert(0, fpn_name)
                spatial_scale.insert(0, spatial_scale[0] * 0.5)
        res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
        return res_dict, spatial_scale