transforms.py 27.7 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding: utf8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
haoyuying 已提交
16 17
import os
import math
W
wuzewu 已提交
18
import random
H
haoyuying 已提交
19 20
import copy
from typing import Callable
W
wuzewu 已提交
21 22
from collections import OrderedDict

H
haoyuying 已提交
23
import cv2
W
wuzewu 已提交
24
import numpy as np
H
haoyuying 已提交
25 26 27 28 29 30
import matplotlib
from PIL import Image, ImageEnhance
from matplotlib import pyplot as plt
from matplotlib.figure import Figure
from scipy.ndimage.filters import gaussian_filter
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
W
wuzewu 已提交
31 32
from paddlehub.process.functional import *

H
haoyuying 已提交
33 34
matplotlib.use('Agg')

W
wuzewu 已提交
35 36

class Compose:
H
haoyuying 已提交
37
    def __init__(self, transforms, to_rgb=True, stay_rgb=False, is_permute=True):
W
wuzewu 已提交
38 39 40 41
        if not isinstance(transforms, list):
            raise TypeError('The transforms must be a list!')
        if len(transforms) < 1:
            raise ValueError('The length of transforms ' + \
H
haoyuying 已提交
42
                             'must be equal or larger than 1!')
W
wuzewu 已提交
43 44
        self.transforms = transforms
        self.to_rgb = to_rgb
H
haoyuying 已提交
45
        self.stay_rgb = stay_rgb
H
haoyuying 已提交
46
        self.is_permute = is_permute
W
wuzewu 已提交
47 48 49 50 51 52 53 54 55 56 57 58

    def __call__(self, im):
        if isinstance(im, str):
            im = cv2.imread(im).astype('float32')

        if im is None:
            raise ValueError('Can\'t read The image file {}!'.format(im))
        if self.to_rgb:
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

        for op in self.transforms:
            im = op(im)
H
haoyuying 已提交
59

H
haoyuying 已提交
60
        if not self.stay_rgb:
H
haoyuying 已提交
61 62 63
            im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)

        if self.is_permute:
H
haoyuying 已提交
64 65
            im = permute(im)

W
wuzewu 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        return im


class RandomHorizontalFlip:
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, im):
        if random.random() < self.prob:
            im = horizontal_flip(im)
        return im


class RandomVerticalFlip:
    def __init__(self, prob=0.1):
        self.prob = prob

    def __call__(self, im):
        if random.random() < self.prob:
            im = vertical_flip(im)
        return im


class Resize:
    # The interpolation mode
    interp_dict = {
        'NEAREST': cv2.INTER_NEAREST,
        'LINEAR': cv2.INTER_LINEAR,
        'CUBIC': cv2.INTER_CUBIC,
        'AREA': cv2.INTER_AREA,
        'LANCZOS4': cv2.INTER_LANCZOS4
    }

    def __init__(self, target_size=512, interp='LINEAR'):
        self.interp = interp
        if not (interp == "RANDOM" or interp in self.interp_dict):
            raise ValueError("interp should be one of {}".format(self.interp_dict.keys()))
        if isinstance(target_size, list) or isinstance(target_size, tuple):
            if len(target_size) != 2:
                raise TypeError(
                    'when target is list or tuple, it should include 2 elements, but it is {}'.format(target_size))
        elif not isinstance(target_size, int):
            raise TypeError("Type of target_size is invalid. Must be Integer or List or tuple, now is {}".format(
                type(target_size)))

        self.target_size = target_size

    def __call__(self, im):
        if self.interp == "RANDOM":
            interp = random.choice(list(self.interp_dict.keys()))
        else:
            interp = self.interp
        im = resize(im, self.target_size, self.interp_dict[interp])
        return im


class ResizeByLong:
    def __init__(self, long_size):
        self.long_size = long_size

    def __call__(self, im):
        im = resize_long(im, self.long_size)
        return im


class ResizeRangeScaling:
    def __init__(self, min_value=400, max_value=600):
        if min_value > max_value:
            raise ValueError('min_value must be less than max_value, '
                             'but they are {} and {}.'.format(min_value, max_value))
        self.min_value = min_value
        self.max_value = max_value

    def __call__(self, im):
        if self.min_value == self.max_value:
            random_size = self.max_value
        else:
            random_size = int(np.random.uniform(self.min_value, self.max_value) + 0.5)
        im = resize_long(im, random_size, cv2.INTER_LINEAR)
        return im


class ResizeStepScaling:
    def __init__(self, min_scale_factor=0.75, max_scale_factor=1.25, scale_step_size=0.25):
        if min_scale_factor > max_scale_factor:
            raise ValueError('min_scale_factor must be less than max_scale_factor, '
                             'but they are {} and {}.'.format(min_scale_factor, max_scale_factor))
        self.min_scale_factor = min_scale_factor
        self.max_scale_factor = max_scale_factor
        self.scale_step_size = scale_step_size

    def __call__(self, im):
        if self.min_scale_factor == self.max_scale_factor:
            scale_factor = self.min_scale_factor

        elif self.scale_step_size == 0:
            scale_factor = np.random.uniform(self.min_scale_factor, self.max_scale_factor)

        else:
            num_steps = int((self.max_scale_factor - self.min_scale_factor) / self.scale_step_size + 1)
            scale_factors = np.linspace(self.min_scale_factor, self.max_scale_factor, num_steps).tolist()
            np.random.shuffle(scale_factors)
            scale_factor = scale_factors[0]
        w = int(round(scale_factor * im.shape[1]))
        h = int(round(scale_factor * im.shape[0]))

        im = resize(im, (w, h), cv2.INTER_LINEAR)
        return im


class Normalize:
    def __init__(self, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
        self.mean = mean
        self.std = std
        if not (isinstance(self.mean, list) and isinstance(self.std, list)):
            raise ValueError("{}: input type is invalid.".format(self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))

    def __call__(self, im):
        mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
        std = np.array(self.std)[np.newaxis, np.newaxis, :]
        im = normalize(im, mean, std)
        return im


class Padding:
    def __init__(self, target_size, im_padding_value=[127.5, 127.5, 127.5]):
        if isinstance(target_size, list) or isinstance(target_size, tuple):
            if len(target_size) != 2:
                raise ValueError(
                    'when target is list or tuple, it should include 2 elements, but it is {}'.format(target_size))
        elif not isinstance(target_size, int):
            raise TypeError("Type of target_size is invalid. Must be Integer or List or tuple, now is {}".format(
                type(target_size)))
        self.target_size = target_size
        self.im_padding_value = im_padding_value

    def __call__(self, im):
        im_height, im_width = im.shape[0], im.shape[1]
        if isinstance(self.target_size, int):
            target_height = self.target_size
            target_width = self.target_size
        else:
            target_height = self.target_size[1]
            target_width = self.target_size[0]
        pad_height = target_height - im_height
        pad_width = target_width - im_width
        if pad_height < 0 or pad_width < 0:
            raise ValueError(
                'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
                .format(im_width, im_height, target_width, target_height))
        else:
            im = cv2.copyMakeBorder(im, 0, pad_height, 0, pad_width, cv2.BORDER_CONSTANT, value=self.im_padding_value)

        return im


class RandomPaddingCrop:
    def __init__(self, crop_size=512, im_padding_value=[127.5, 127.5, 127.5]):
        if isinstance(crop_size, list) or isinstance(crop_size, tuple):
            if len(crop_size) != 2:
                raise ValueError(
                    'when crop_size is list or tuple, it should include 2 elements, but it is {}'.format(crop_size))
        elif not isinstance(crop_size, int):
            raise TypeError("Type of crop_size is invalid. Must be Integer or List or tuple, now is {}".format(
                type(crop_size)))
        self.crop_size = crop_size
        self.im_padding_value = im_padding_value

    def __call__(self, im):
        if isinstance(self.crop_size, int):
            crop_width = self.crop_size
            crop_height = self.crop_size
        else:
            crop_width = self.crop_size[0]
            crop_height = self.crop_size[1]

        img_height = im.shape[0]
        img_width = im.shape[1]

        if img_height == crop_height and img_width == crop_width:
            return im
        else:
            pad_height = max(crop_height - img_height, 0)
            pad_width = max(crop_width - img_width, 0)
            if (pad_height > 0 or pad_width > 0):
H
haoyuying 已提交
254 255 256 257 258 259 260
                im = cv2.copyMakeBorder(im,
                                        0,
                                        pad_height,
                                        0,
                                        pad_width,
                                        cv2.BORDER_CONSTANT,
                                        value=self.im_padding_value)
W
wuzewu 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

            if crop_height > 0 and crop_width > 0:
                h_off = np.random.randint(img_height - crop_height + 1)
                w_off = np.random.randint(img_width - crop_width + 1)

                im = im[h_off:(crop_height + h_off), w_off:(w_off + crop_width), :]

            return im


class RandomBlur:
    def __init__(self, prob=0.1):
        self.prob = prob

    def __call__(self, im):
        if self.prob <= 0:
            n = 0
        elif self.prob >= 1:
            n = 1
        else:
            n = int(1.0 / self.prob)
        if n > 0:
            if np.random.randint(0, n) == 0:
                radius = np.random.randint(3, 10)
                if radius % 2 != 1:
                    radius = radius + 1
                if radius > 9:
                    radius = 9
                im = cv2.GaussianBlur(im, (radius, radius), 0, 0)

        return im


class RandomRotation:
    def __init__(self, max_rotation=15, im_padding_value=[127.5, 127.5, 127.5]):
        self.max_rotation = max_rotation
        self.im_padding_value = im_padding_value

    def __call__(self, im):
        if self.max_rotation > 0:
            (h, w) = im.shape[:2]
            do_rotation = np.random.uniform(-self.max_rotation, self.max_rotation)
            pc = (w // 2, h // 2)
            r = cv2.getRotationMatrix2D(pc, do_rotation, 1.0)
            cos = np.abs(r[0, 0])
            sin = np.abs(r[0, 1])

            nw = int((h * sin) + (w * cos))
            nh = int((h * cos) + (w * sin))

            (cx, cy) = pc
            r[0, 2] += (nw / 2) - cx
            r[1, 2] += (nh / 2) - cy
            dsize = (nw, nh)
H
haoyuying 已提交
315 316 317 318 319 320
            im = cv2.warpAffine(im,
                                r,
                                dsize=dsize,
                                flags=cv2.INTER_LINEAR,
                                borderMode=cv2.BORDER_CONSTANT,
                                borderValue=self.im_padding_value)
W
wuzewu 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

        return im


class RandomScaleAspect:
    def __init__(self, min_scale=0.5, aspect_ratio=0.33):
        self.min_scale = min_scale
        self.aspect_ratio = aspect_ratio

    def __call__(self, im):
        if self.min_scale != 0 and self.aspect_ratio != 0:
            img_height = im.shape[0]
            img_width = im.shape[1]
            for i in range(0, 10):
                area = img_height * img_width
                target_area = area * np.random.uniform(self.min_scale, 1.0)
                aspectRatio = np.random.uniform(self.aspect_ratio, 1.0 / self.aspect_ratio)

                dw = int(np.sqrt(target_area * 1.0 * aspectRatio))
                dh = int(np.sqrt(target_area * 1.0 / aspectRatio))
                if (np.random.randint(10) < 5):
                    tmp = dw
                    dw = dh
                    dh = tmp

                if (dh < img_height and dw < img_width):
                    h1 = np.random.randint(0, img_height - dh)
                    w1 = np.random.randint(0, img_width - dw)

                    im = im[h1:(h1 + dh), w1:(w1 + dw), :]
                    im = cv2.resize(im, (img_width, img_height), interpolation=cv2.INTER_LINEAR)

        return im


class RandomDistort:
    def __init__(self,
                 brightness_range=0.5,
                 brightness_prob=0.5,
                 contrast_range=0.5,
                 contrast_prob=0.5,
                 saturation_range=0.5,
                 saturation_prob=0.5,
                 hue_range=18,
                 hue_prob=0.5):
        self.brightness_range = brightness_range
        self.brightness_prob = brightness_prob
        self.contrast_range = contrast_range
        self.contrast_prob = contrast_prob
        self.saturation_range = saturation_range
        self.saturation_prob = saturation_prob
        self.hue_range = hue_range
        self.hue_prob = hue_prob

    def __call__(self, im):
        brightness_lower = 1 - self.brightness_range
        brightness_upper = 1 + self.brightness_range
        contrast_lower = 1 - self.contrast_range
        contrast_upper = 1 + self.contrast_range
        saturation_lower = 1 - self.saturation_range
        saturation_upper = 1 + self.saturation_range
        hue_lower = -self.hue_range
        hue_upper = self.hue_range
        ops = [brightness, contrast, saturation, hue]
        random.shuffle(ops)
        params_dict = {
            'brightness': {
                'brightness_lower': brightness_lower,
                'brightness_upper': brightness_upper
            },
            'contrast': {
                'contrast_lower': contrast_lower,
                'contrast_upper': contrast_upper
            },
            'saturation': {
                'saturation_lower': saturation_lower,
                'saturation_upper': saturation_upper
            },
            'hue': {
                'hue_lower': hue_lower,
                'hue_upper': hue_upper
            }
        }
        prob_dict = {
            'brightness': self.brightness_prob,
            'contrast': self.contrast_prob,
            'saturation': self.saturation_prob,
            'hue': self.hue_prob
        }
        im = im.astype('uint8')
        im = Image.fromarray(im)
        for id in range(4):
            params = params_dict[ops[id].__name__]
            prob = prob_dict[ops[id].__name__]
            params['im'] = im
            if np.random.uniform(0, 1) < prob:
                im = ops[id](**params)
        im = np.asarray(im).astype('float32')

        return im
H
haoyuying 已提交
421

H
haoyuying 已提交
422

H
haoyuying 已提交
423 424 425
class ConvertColorSpace:
    """
    Convert color space from RGB to LAB or from LAB to RGB.
H
haoyuying 已提交
426

H
haoyuying 已提交
427 428
    Args:
       mode(str): Color space convert mode, it can be 'RGB2LAB' or 'LAB2RGB'.
H
haoyuying 已提交
429

H
haoyuying 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    Return:
        img(np.ndarray): converted image.
    """
    def __init__(self, mode: str = 'RGB2LAB'):
        self.mode = mode

    def rgb2xyz(self, rgb: np.ndarray) -> np.ndarray:
        """
        Convert color space from RGB to XYZ.

        Args:
           img(np.ndarray): Original RGB image.

        Return:
            img(np.ndarray): Converted XYZ image.
        """
        mask = (rgb > 0.04045)
        np.seterr(invalid='ignore')
H
haoyuying 已提交
448
        rgb = (((rgb + .055) / 1.055)**2.4) * mask + rgb / 12.92 * (1 - mask)
H
haoyuying 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        rgb = np.nan_to_num(rgb)
        x = .412453 * rgb[:, 0, :, :] + .357580 * rgb[:, 1, :, :] + .180423 * rgb[:, 2, :, :]
        y = .212671 * rgb[:, 0, :, :] + .715160 * rgb[:, 1, :, :] + .072169 * rgb[:, 2, :, :]
        z = .019334 * rgb[:, 0, :, :] + .119193 * rgb[:, 1, :, :] + .950227 * rgb[:, 2, :, :]
        out = np.concatenate((x[:, None, :, :], y[:, None, :, :], z[:, None, :, :]), axis=1)
        return out

    def xyz2lab(self, xyz: np.ndarray) -> np.ndarray:
        """
        Convert color space from XYZ to LAB.

        Args:
           img(np.ndarray): Original XYZ image.

        Return:
            img(np.ndarray): Converted LAB image.
        """
        sc = np.array((0.95047, 1., 1.08883))[None, :, None, None]
        xyz_scale = xyz / sc
        mask = (xyz_scale > .008856).astype(np.float32)
        xyz_int = np.cbrt(xyz_scale) * mask + (7.787 * xyz_scale + 16. / 116.) * (1 - mask)
        L = 116. * xyz_int[:, 1, :, :] - 16.
        a = 500. * (xyz_int[:, 0, :, :] - xyz_int[:, 1, :, :])
        b = 200. * (xyz_int[:, 1, :, :] - xyz_int[:, 2, :, :])
        out = np.concatenate((L[:, None, :, :], a[:, None, :, :], b[:, None, :, :]), axis=1)
        return out

    def rgb2lab(self, rgb: np.ndarray) -> np.ndarray:
        """
        Convert color space from RGB to LAB.

        Args:
           img(np.ndarray): Original RGB image.

        Return:
            img(np.ndarray): Converted LAB image.
        """
        lab = self.xyz2lab(self.rgb2xyz(rgb))
        l_rs = (lab[:, [0], :, :] - 50) / 100
        ab_rs = lab[:, 1:, :, :] / 110
        out = np.concatenate((l_rs, ab_rs), axis=1)
        return out

    def xyz2rgb(self, xyz: np.ndarray) -> np.ndarray:
        """
        Convert color space from XYZ to RGB.

        Args:
           img(np.ndarray): Original XYZ image.

        Return:
            img(np.ndarray): Converted RGB image.
        """
        r = 3.24048134 * xyz[:, 0, :, :] - 1.53715152 * xyz[:, 1, :, :] - 0.49853633 * xyz[:, 2, :, :]
        g = -0.96925495 * xyz[:, 0, :, :] + 1.87599 * xyz[:, 1, :, :] + .04155593 * xyz[:, 2, :, :]
        b = .05564664 * xyz[:, 0, :, :] - .20404134 * xyz[:, 1, :, :] + 1.05731107 * xyz[:, 2, :, :]
        rgb = np.concatenate((r[:, None, :, :], g[:, None, :, :], b[:, None, :, :]), axis=1)
        rgb = np.maximum(rgb, 0)  # sometimes reaches a small negative number, which causes NaNs
        mask = (rgb > .0031308).astype(np.float32)
        np.seterr(invalid='ignore')
H
haoyuying 已提交
509
        out = (1.055 * (rgb**(1. / 2.4)) - 0.055) * mask + 12.92 * rgb * (1 - mask)
H
haoyuying 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        out = np.nan_to_num(out)
        return out

    def lab2xyz(self, lab: np.ndarray) -> np.ndarray:
        """
        Convert color space from LAB to XYZ.

        Args:
           img(np.ndarray): Original LAB image.

        Return:
            img(np.ndarray): Converted XYZ image.
        """
        y_int = (lab[:, 0, :, :] + 16.) / 116.
        x_int = (lab[:, 1, :, :] / 500.) + y_int
        z_int = y_int - (lab[:, 2, :, :] / 200.)
        z_int = np.maximum(z_int, 0)
        out = np.concatenate((x_int[:, None, :, :], y_int[:, None, :, :], z_int[:, None, :, :]), axis=1)
        mask = (out > .2068966).astype(np.float32)
        np.seterr(invalid='ignore')
H
haoyuying 已提交
530
        out = (out**3.) * mask + (out - 16. / 116.) / 7.787 * (1 - mask)
H
haoyuying 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        out = np.nan_to_num(out)
        sc = np.array((0.95047, 1., 1.08883))[None, :, None, None]
        out = out * sc
        return out

    def lab2rgb(self, lab_rs: np.ndarray) -> np.ndarray:
        """
        Convert color space from LAB to RGB.

        Args:
           img(np.ndarray): Original LAB image.

        Return:
            img(np.ndarray): Converted RGB image.
        """
        l = lab_rs[:, [0], :, :] * 100 + 50
        ab = lab_rs[:, 1:, :, :] * 110
        lab = np.concatenate((l, ab), axis=1)
        out = self.xyz2rgb(self.lab2xyz(lab))
        return out

    def __call__(self, img: np.ndarray) -> np.ndarray:
        if self.mode == 'RGB2LAB':
            img = np.expand_dims(img / 255, 0)
            img = np.array(img).transpose(0, 3, 1, 2)
            return self.rgb2lab(img)
        elif self.mode == 'LAB2RGB':
            return self.lab2rgb(img)
        else:
            raise ValueError('The mode should be RGB2LAB or LAB2RGB')


class ColorizeHint:
    """Get hint and mask images for colorization.
H
haoyuying 已提交
565

H
haoyuying 已提交
566
    This method is prepared for user guided colorization tasks. Take the original RGB images as imput, we will obtain the local hints and correspoding mask to guid colorization process.
H
haoyuying 已提交
567

H
haoyuying 已提交
568 569 570 571 572
    Args:
       percent(float): Probability for ignoring hint in an iteration.
       num_points(int): Number of selected hints in an iteration.
       samp(str): Sample method, default is normal.
       use_avg(bool): Whether to use mean in selected hint area.
H
haoyuying 已提交
573

H
haoyuying 已提交
574 575 576 577
    Return:
        hint(np.ndarray): hint images
        mask(np.ndarray): mask images
    """
H
haoyuying 已提交
578
    def __init__(self, percent: float, num_points: int = None, samp: str = 'normal', use_avg: bool = True):
H
haoyuying 已提交
579 580 581 582 583 584
        self.percent = percent
        self.num_points = num_points
        self.samp = samp
        self.use_avg = use_avg

    def __call__(self, data: np.ndarray, hint: np.ndarray, mask: np.ndarray):
H
haoyuying 已提交
585
        sample_Ps = [1, 2, 3, 4, 5, 6, 7, 8, 9]
H
haoyuying 已提交
586 587 588 589 590 591 592 593 594 595
        self.data = data
        self.hint = hint
        self.mask = mask
        N, C, H, W = data.shape
        for nn in range(N):
            pp = 0
            cont_cond = True
            while cont_cond:
                if self.num_points is None:  # draw from geometric
                    # embed()
H
haoyuying 已提交
596
                    cont_cond = np.random.rand() > (1 - self.percent)
H
haoyuying 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                else:  # add certain number of points
                    cont_cond = pp < self.num_points
                if not cont_cond:  # skip out of loop if condition not met
                    continue
                P = np.random.choice(sample_Ps)  # patch size
                # sample location
                if self.samp == 'normal':  # geometric distribution
                    h = int(np.clip(np.random.normal((H - P + 1) / 2., (H - P + 1) / 4.), 0, H - P))
                    w = int(np.clip(np.random.normal((W - P + 1) / 2., (W - P + 1) / 4.), 0, W - P))
                else:  # uniform distribution
                    h = np.random.randint(H - P + 1)
                    w = np.random.randint(W - P + 1)
                # add color point
                if self.use_avg:
                    # embed()
H
haoyuying 已提交
612 613 614 615 616
                    hint[nn, :, h:h + P, w:w + P] = np.mean(np.mean(data[nn, :, h:h + P, w:w + P],
                                                                    axis=2,
                                                                    keepdims=True),
                                                            axis=1,
                                                            keepdims=True).reshape(1, C, 1, 1)
H
haoyuying 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629
                else:
                    hint[nn, :, h:h + P, w:w + P] = data[nn, :, h:h + P, w:w + P]
                mask[nn, :, h:h + P, w:w + P] = 1
                # increment counter
                pp += 1

        mask -= 0.5
        return hint, mask


class SqueezeAxis:
    """
    Squeeze the specific axis when it equal to 1.
H
haoyuying 已提交
630

H
haoyuying 已提交
631 632
    Args:
       axis(int): Which axis should be squeezed.
H
haoyuying 已提交
633

H
haoyuying 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    """
    def __init__(self, axis: int):
        self.axis = axis

    def __call__(self, data: dict):
        if isinstance(data, dict):
            for key in data.keys():
                data[key] = np.squeeze(data[key], 0).astype(np.float32)
            return data
        else:
            raise TypeError("Type of data is invalid. Must be Dict or List or tuple, now is {}".format(type(data)))


class ColorizePreprocess:
    """Prepare dataset for image Colorization.
H
haoyuying 已提交
649

H
haoyuying 已提交
650 651 652 653 654 655 656
    Args:
       ab_thresh(float): Thresh value for setting mask value.
       p(float): Probability for ignoring hint in an iteration.
       num_points(int): Number of selected hints in an iteration.
       samp(str): Sample method, default is normal.
       use_avg(bool): Whether to use mean in selected hint area.
       is_train(bool): Training process or not.
H
haoyuying 已提交
657

H
haoyuying 已提交
658 659 660 661
    Return:
        data(dict):The preprocessed data for colorization.

    """
H
haoyuying 已提交
662 663 664
    def __init__(self,
                 ab_thresh: float = 0.,
                 p: float = 0.,
H
haoyuying 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                 num_points: int = None,
                 samp: str = 'normal',
                 use_avg: bool = True,
                 is_train: bool = True):
        self.ab_thresh = ab_thresh
        self.p = p
        self.num_points = num_points
        self.samp = samp
        self.use_avg = use_avg
        self.is_train = is_train
        self.gethint = ColorizeHint(percent=self.p, num_points=self.num_points, samp=self.samp, use_avg=self.use_avg)
        self.squeeze = SqueezeAxis(0)

    def __call__(self, data_lab: np.ndarray):
        """
        This method seperates the L channel and AB channel, obtain hint, mask and real_B_enc as the input for colorization task.

        Args:
           img(np.ndarray): LAB image.

        Returns:
            data(dict):The preprocessed data for colorization.
        """
        data = {}
        A = 2 * 110 / 10 + 1
H
haoyuying 已提交
690 691 692
        data['A'] = data_lab[:, [
            0,
        ], :, :]
H
haoyuying 已提交
693 694 695
        data['B'] = data_lab[:, 1:, :, :]
        if self.ab_thresh > 0:  # mask out grayscale images
            thresh = 1. * self.ab_thresh / 110
H
haoyuying 已提交
696 697
            mask = np.sum(np.abs(np.max(np.max(data['B'], axis=3), axis=2) - np.min(np.min(data['B'], axis=3), axis=2)),
                          axis=1)
H
haoyuying 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
            mask = (mask >= thresh)
            data['A'] = data['A'][mask, :, :, :]
            data['B'] = data['B'][mask, :, :, :]
            if np.sum(mask) == 0:
                return None
        data_ab_rs = np.round((data['B'][:, :, ::4, ::4] * 110. + 110.) / 10.)  # normalized bin number
        data['real_B_enc'] = data_ab_rs[:, [0], :, :] * A + data_ab_rs[:, [1], :, :]
        data['hint_B'] = np.zeros(shape=data['B'].shape)
        data['mask_B'] = np.zeros(shape=data['A'].shape)
        data['hint_B'], data['mask_B'] = self.gethint(data['B'], data['hint_B'], data['mask_B'])
        if self.is_train:
            data = self.squeeze(data)
            data['real_B_enc'] = data['real_B_enc'].astype(np.int64)
        else:
            data['A'] = data['A'].astype(np.float32)
            data['B'] = data['B'].astype(np.float32)
            data['real_B_enc'] = data['real_B_enc'].astype(np.int64)
            data['hint_B'] = data['hint_B'].astype(np.float32)
            data['mask_B'] = data['mask_B'].astype(np.float32)
        return data


class ColorPostprocess:
    """
    Transform images from [0, 1] to [0, 255]
H
haoyuying 已提交
723

H
haoyuying 已提交
724 725
    Args:
       type(type): Type of Image value.
H
haoyuying 已提交
726

H
haoyuying 已提交
727 728 729 730 731 732 733 734 735 736 737
    Return:
        img(np.ndarray): Image in range of 0-255.
    """
    def __init__(self, type: type = np.uint8):
        self.type = type

    def __call__(self, img: np.ndarray):
        img = np.transpose(img, (1, 2, 0))
        img = np.clip(img, 0, 1) * 255
        img = img.astype(self.type)
        return img
H
haoyuying 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775


class CenterCrop:
    """
        Crop the middle part of the image to the specified size.

        Args:
           crop_size(int): Crop size.

        Return:
            img(np.ndarray): Croped image.
    """
    def __init__(self, crop_size: int):
        self.crop_size = crop_size

    def __call__(self, img: np.ndarray):
        img_width, img_height, chanel = img.shape
        crop_top = int((img_height - self.crop_size) / 2.)
        crop_left = int((img_width - self.crop_size) / 2.)
        return img[crop_left:crop_left + self.crop_size, crop_top:crop_top + self.crop_size, :]


class SetType:
    """
    Set image type.

    Args:
       type(type): Type of Image value.

    Return:
        img(np.ndarray): Transformed image.
    """
    def __init__(self, datatype: type = 'float32'):
        self.type = datatype

    def __call__(self, img: np.ndarray):
        img = img.astype(self.type)
        return img
H
haoyuying 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792


class ResizeScaling:
    """Resize images by scaling method.

    Args:
        target(int): Target image size.
        interp(Callable): Interpolation method.
    """
    def __init__(self, target: int = 368, interp: Callable = cv2.INTER_CUBIC):
        self.target = target
        self.interp = interp

    def __call__(self, img, scale_search):
        scale = scale_search * self.target / img.shape[0]
        resize_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=self.interp)
        return resize_img