nets.py 5.5 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
import sys
import time
import numpy as np

import paddle.fluid as fluid
import paddle
import paddle_hub as hub


def bow_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    Bow net
    """
    # embedding layer
    emb = fluid.layers.embedding(
        input=data, size=[dict_dim, emb_dim], param_attr="bow_embedding")
    # bow layer
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    # full connect layer
    fc_1 = fluid.layers.fc(
        input=bow_tanh, size=hid_dim, act="tanh", name="bow_fc1")
    fc_2 = fluid.layers.fc(
        input=fc_1, size=hid_dim2, act="tanh", name="bow_fc2")
    # softmax layer
    prediction = fluid.layers.fc(
        input=[fc_2], size=class_dim, act="softmax", name="fc_softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc = fluid.layers.accuracy(input=prediction, label=label)

    return avg_cost, acc, prediction, bow_tanh


def cnn_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2,
            win_size=3):
    """
    Conv net
    """
    # embedding layer
    emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])

    # convolution layer
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=win_size,
        act="tanh",
        pool_type="max")

    # full connect layer
    fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
    # softmax layer
    prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc = fluid.layers.accuracy(input=prediction, label=label)

    return avg_cost, acc, prediction, [conv_3]


def lstm_net(data,
             label,
             dict_dim,
             emb_dim=128,
             hid_dim=128,
             hid_dim2=96,
             class_dim=2,
             emb_lr=30.0):
    """
    Lstm net
    """
    # embedding layer
    emb = fluid.layers.embedding(
        input=data,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(learning_rate=emb_lr))

    # Lstm layer
    fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)

    lstm_h, c = fluid.layers.dynamic_lstm(
        input=fc0, size=hid_dim * 4, is_reverse=False)

    # max pooling layer
    lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
    lstm_max_tanh = fluid.layers.tanh(lstm_max)

    # full connect layer
    fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
    # softmax layer
    prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')

    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc = fluid.layers.accuracy(input=prediction, label=label)

    return avg_cost, acc, prediction, lstm_max_tanh


def bilstm_net(data,
               label,
               dict_dim,
               emb_dim=128,
               hid_dim=128,
               hid_dim2=96,
               class_dim=2,
               emb_lr=30.0):
    """
    Bi-Lstm net
    """
    # embedding layer
    emb = fluid.layers.embedding(
        input=data,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(learning_rate=emb_lr))

    # bi-lstm layer
    fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)

    rfc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)

    lstm_h, c = fluid.layers.dynamic_lstm(
        input=fc0, size=hid_dim * 4, is_reverse=False)

    rlstm_h, c = fluid.layers.dynamic_lstm(
        input=rfc0, size=hid_dim * 4, is_reverse=True)

    # extract last layer
    lstm_last = fluid.layers.sequence_last_step(input=lstm_h)
    rlstm_last = fluid.layers.sequence_last_step(input=rlstm_h)

    lstm_last_tanh = fluid.layers.tanh(lstm_last)
    rlstm_last_tanh = fluid.layers.tanh(rlstm_last)

    # concat layer
    lstm_concat = fluid.layers.concat(input=[lstm_last, rlstm_last], axis=1)

    # full connect layer
    fc1 = fluid.layers.fc(input=lstm_concat, size=hid_dim2, act='tanh')
    # softmax layer
    prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc = fluid.layers.accuracy(input=prediction, label=label)

    return avg_cost, acc, prediction, lstm_concat


def gru_net(data,
            label,
            dict_dim,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2,
            emb_lr=30.0):
    """
    gru net
    """
    emb = fluid.layers.embedding(
        input=data,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(learning_rate=emb_lr))

    fc0 = fluid.layers.fc(input=emb, size=hid_dim * 3)

    gru_h = fluid.layers.dynamic_gru(input=fc0, size=hid_dim, is_reverse=False)

    gru_max = fluid.layers.sequence_pool(input=gru_h, pool_type='max')
    gru_max_tanh = fluid.layers.tanh(gru_max)

    fc1 = fluid.layers.fc(input=gru_max_tanh, size=hid_dim2, act='tanh')

    prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc = fluid.layers.accuracy(input=prediction, label=label)

    return avg_cost, acc, prediction, gru_max_tanh