strategy.py 26.7 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
Z
Zeyu Chen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

K
kinghuin 已提交
20
import math
21

Z
Zeyu Chen 已提交
22 23
import paddle.fluid as fluid

K
kinghuin 已提交
24
from paddlehub.common.logger import logger
W
wuzewu 已提交
25
from paddlehub.finetune.regularizer import L2SPDecayRegularizer
K
kinghuin 已提交
26 27
import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler
from paddle.fluid.layers import control_flow
Z
Zeyu Chen 已提交
28 29


W
wuzewu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43
def get_pretrained_parameter(main_program, start_program):
    pretrained_parameters = []
    global_block = main_program.global_block()
    for op in global_block.ops[::-1]:
        for input_arg in op.input_arg_names:
            var = global_block.var(input_arg)
            if isinstance(
                    var, fluid.framework.Parameter
            ) and input_arg not in start_program.global_block().vars:
                pretrained_parameters.append(var)

    return pretrained_parameters


K
kinghuin 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def get_parentOp_depth_max(parent_ops, op_depth_dict):
    max_depth = 1
    for parent_op in parent_ops:
        depth = op_depth_dict.get(parent_op, 1)
        if max_depth < depth:
            max_depth = depth
    return max_depth


def get_opDepth_min(ops, op_depth_dict):
    min_depth = max(op_depth_dict.values())
    for op in ops:
        depth = op_depth_dict[op]
        if min_depth > depth:
            min_depth = depth
    return min_depth


def get_depth_parameter(main_program):
    global_block = main_program.global_block()

    var_op_dict = {}
    for op in global_block.ops:

        for input_arg in op.input_arg_names:
            if input_arg not in var_op_dict.keys():
                var_op_dict[input_arg] = {"output_ops": [], "input_ops": []}
            var_op_dict[input_arg]["output_ops"].append(op)

        for output_arg in op.output_arg_names:
            if output_arg not in var_op_dict.keys():
                var_op_dict[output_arg] = {"output_ops": [], "input_ops": []}
            var_op_dict[output_arg]["input_ops"].append(op)

    op_depth_dict = {}
    for op in global_block.ops:
        parent_ops = []
        for input_arg in op.input_arg_names:
            for parent_op in var_op_dict[input_arg]["input_ops"]:
                if parent_op not in parent_ops:
                    parent_ops.append(parent_op)
        if not parent_ops:
            op_depth_dict[op] = 1
        else:
            op_depth_dict[op] = get_parentOp_depth_max(parent_ops,
                                                       op_depth_dict) + 1

    depth_params_dict = {}
    updated_depth_params_dict = {}
    for param in global_block.iter_parameters():
        adherent_ops = var_op_dict[param.name]["output_ops"]
        depth = get_opDepth_min(adherent_ops, op_depth_dict)
        if depth not in depth_params_dict.keys():
            depth_params_dict[depth] = []
            updated_depth_params_dict[depth] = []
        depth_params_dict[depth].append(param)
        updated_depth_params_dict[depth].append(param)

    depth_list = sorted(depth_params_dict.keys())
    len_depth_list = len(depth_list)
    for index, depth in enumerate(depth_list):
        for param in depth_params_dict[depth]:
            prefix = param.name.split(".")[0]
            if index < len_depth_list - 1:
                next_depth = depth_list[index + 1]
                for param_next_depth in depth_params_dict[next_depth]:
                    prefix_next_depth = param_next_depth.name.split(".")[0]
                    if prefix == prefix_next_depth:
                        updated_depth_params_dict[depth].append(
                            param_next_depth)
                        updated_depth_params_dict[next_depth].remove(
                            param_next_depth)

                        if not updated_depth_params_dict[next_depth]:
                            updated_depth_params_dict.pop(next_depth)

    return updated_depth_params_dict


K
kinghuin 已提交
123
def set_gradual_unfreeze(depth_params_dict, unfreeze_depths):
K
kinghuin 已提交
124 125 126 127 128 129 130 131 132 133 134
    for depth in unfreeze_depths:
        for index, param in enumerate(depth_params_dict[depth]):
            depth_params_dict[depth][index].stop_gradient = False

    freeze_depths = list(
        set(depth_params_dict.keys()).difference(set(unfreeze_depths)))
    for depth in freeze_depths:
        for index, param in enumerate(depth_params_dict[depth]):
            depth_params_dict[depth][index].stop_gradient = True


Z
Zeyu Chen 已提交
135
class DefaultStrategy(object):
W
wuzewu 已提交
136
    def __init__(self, learning_rate=1e-4, optimizer_name="adam", **kwargs):
Z
Zeyu Chen 已提交
137 138
        self.learning_rate = learning_rate
        self._optimizer_name = optimizer_name
139
        if self._optimizer_name.lower() == "sgd":
Z
Zeyu Chen 已提交
140
            self.optimizer = fluid.optimizer.SGD(
W
wuzewu 已提交
141
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
142 143
        elif self._optimizer_name.lower() == "adagrad":
            self.optimizer = fluid.optimizer.Adagrad(
W
wuzewu 已提交
144
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
145 146
        elif self._optimizer_name.lower() == "adamax":
            self.optimizer = fluid.optimizer.Adamax(
W
wuzewu 已提交
147
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
148 149
        elif self._optimizer_name.lower() == "decayedadagrad":
            self.optimizer = fluid.optimizer.DecayedAdagrad(
W
wuzewu 已提交
150
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
151 152
        elif self._optimizer_name.lower() == "ftrl":
            self.optimizer = fluid.optimizer.Ftrl(
W
wuzewu 已提交
153
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
154 155
        elif self._optimizer_name.lower() == "larsmomentum":
            self.optimizer = fluid.optimizer.LarsMomentum(
W
wuzewu 已提交
156
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
157 158
        elif self._optimizer_name.lower() == "momentum":
            self.optimizer = fluid.optimizer.Momentum(
W
wuzewu 已提交
159
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
160 161
        elif self._optimizer_name.lower() == "decayedadagrad":
            self.optimizer = fluid.optimizer.DecayedAdagrad(
W
wuzewu 已提交
162
                learning_rate=self.learning_rate, **kwargs)
Z
zhangxuefei 已提交
163 164
        elif self._optimizer_name.lower() == "rmsprop":
            self.optimizer = fluid.optimizer.RMSPropOptimizer(
W
wuzewu 已提交
165
                learning_rate=self.learning_rate, **kwargs)
166 167
        else:
            self.optimizer = fluid.optimizer.Adam(
W
wuzewu 已提交
168
                learning_rate=self.learning_rate, **kwargs)
Z
Zeyu Chen 已提交
169

K
kinghuin 已提交
170
    def execute(self, loss, data_reader, config, dev_count):
Z
Zeyu Chen 已提交
171 172 173 174 175
        if self.optimizer is not None:
            self.optimizer.minimize(loss)
        else:
            raise ValueError("DefaultStrategy's optimizer is None")

Z
Zeyu Chen 已提交
176 177 178
    def __str__(self):
        return "DefaultStrategy"

K
kinghuin 已提交
179 180 181
    def step(self):
        pass

Z
Zeyu Chen 已提交
182

K
kinghuin 已提交
183
class CombinedStrategy(DefaultStrategy):
Z
Zeyu Chen 已提交
184
    def __init__(self,
K
kinghuin 已提交
185
                 optimizer_name="adam",
Z
Zeyu Chen 已提交
186
                 learning_rate=1e-4,
K
kinghuin 已提交
187 188
                 scheduler=None,
                 regularization=None,
W
wuzewu 已提交
189 190
                 clip=None,
                 **kwargs):
K
kinghuin 已提交
191
        super(CombinedStrategy, self).__init__(
W
wuzewu 已提交
192 193 194 195
            optimizer_name=optimizer_name,
            learning_rate=learning_rate,
            **kwargs)
        self.kwargs = kwargs
K
kinghuin 已提交
196 197 198 199 200 201 202 203 204 205
        # init set
        self.scheduler = {
            "warmup": 0.0,
            "linear_decay": {
                "start_point": 1.0,
                "end_learning_rate": 0.0,
            },
            "noam_decay": False,
            "discriminative": {
                "blocks": 0,
206
                "params_layer": None,
K
kinghuin 已提交
207 208
                "factor": 2.6
            },
209 210 211 212
            "gradual_unfreeze": {
                "blocks": 0,
                "params_layer": None,
            },
K
kinghuin 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            "slanted_triangle": {
                "cut_fraction": 0.0,
                "ratio": 32
            }
        }

        self.regularization = {
            "L2": 0.0,
            "L2SP": 0.0,
            "weight_decay": 0.0,
        }

        self.clip = {"GlobalNorm": 0.0, "Norm": 0.0}

        if scheduler == None:
            scheduler = {}
        if regularization == None:
            regularization = {}
        if clip == None:
            clip = {}

        # check legality and assign
        for name in scheduler:
            self.check_assign(self.scheduler, name, scheduler[name])
        for name in regularization:
            self.check_assign(self.regularization, name, regularization[name])
        for name in clip:
            self.check_assign(self.clip, name, clip[name])

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        # resolve the conflict
        if self.scheduler["discriminative"]["params_layer"] and self.scheduler[
                "discriminative"]["blocks"]:
            logger.warning(
                "Both params_layer and blocks have been set in discriminative, only params_layer will take effect"
            )
            self.scheduler["discriminative"]["blocks"] = 0

        if self.scheduler["gradual_unfreeze"][
                "params_layer"] and self.scheduler["gradual_unfreeze"]["blocks"]:
            logger.warning(
                "Both params_layer and blocks have been set in gradual_unfreeze, only params_layer will take effect"
            )
            self.scheduler["gradual_unfreeze"]["blocks"] = 0

        if self.scheduler["slanted_triangle"]["cut_fraction"] and (
                self.scheduler["warmup"] or self.scheduler["noam_decay"]
                or self.scheduler["linear_decay"]["start_point"] < 1):
            logger.warning(
                "You are using slanted_triangle learning rate strategy, "
                "which will make warmup, noam_decay and linear_decay useless")
            self.scheduler["warmup"] = 0.0
            self.scheduler["noam_decay"] = False
            self.scheduler["linear_decay"]["start_point"] = 1

        if self.scheduler["noam_decay"] and self.scheduler["linear_decay"][
                "start_point"]:
            logger.warning(
                "Both noam_decay and linear_decay have been set, only noam_decay will take effect"
            )
            self.scheduler["linear_decay"]["start_point"] = 1

K
kinghuin 已提交
274 275 276 277 278 279 280 281 282 283
        self.epoch = 0
        self.main_program = None

    def check_assign(self, dictionary, key, value):
        if key not in dictionary:
            raise ValueError("Invalid parameter: %s" % key)
        if isinstance(value, dict) and isinstance(dictionary[key], dict):
            sub_dict = dictionary[key]
            for sub_name in value:
                self.check_assign(sub_dict, sub_name, value[sub_name])
284 285 286
        elif isinstance(dictionary[key], type(value)) or (
                isinstance(dictionary[key], float)
                and isinstance(value, (float, int))) or dictionary[key] == None:
K
kinghuin 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
            dictionary[key] = value
        else:
            if isinstance(dictionary[key], dict):
                raise ValueError(
                    "The type of parameter %s should be a dict with keys: %s" %
                    (key, dictionary[key].keys()))
            else:
                raise ValueError("The type of parameter %s should be %s" %
                                 (key, type(dictionary[key])))

    def add_scheduler(self, name="warmup", value=0, **values):
        if values:
            self.check_assign(self.scheduler, name, values)
        else:
            self.check_assign(self.scheduler, name, value)

    def add_regularization(self, name="L2", value=1e-3, **values):
        if values:
            self.check_assign(self.regularization, name, values)
        else:
            self.check_assign(self.regularization, name, value)

    def add_clip(self, name="GlobalNorm", value=1.0, **values):
        if values:
            self.check_assign(self.clip, name, values)
        else:
            self.check_assign(self.clip, name, value)

    def scheduler_handler(self, max_train_steps):
        scheduled_lr = fluid.layers.create_global_var(
            shape=[1],
            value=self.learning_rate,
            dtype='float32',
            persistable=True,
            name="learning_rate")

323 324 325 326 327 328 329 330 331
        warmup_steps = int(max_train_steps * self.scheduler["warmup"])

        # noam_decay (based on warmup)
        if self.scheduler["noam_decay"]:
            if warmup_steps > 0:
                scheduled_lr = fluid.layers.learning_rate_scheduler \
                    .noam_decay(1 / (warmup_steps * (self.learning_rate ** 2)),
                                warmup_steps)
            else:
K
kinghuin 已提交
332
                logger.warning(
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                    "Noam decay learning rate scheduler should have positive \
                    warmup steps, using constant learning rate instead!")

        # warmup, linear_decay
        if warmup_steps > 0 or self.scheduler["linear_decay"]["start_point"] < 1:
            with self.main_program._lr_schedule_guard():
                global_step = lr_scheduler._decay_step_counter()
                with control_flow.Switch() as switch:
                    if warmup_steps > 0:
                        with switch.case(global_step < warmup_steps):
                            decayed_lr = self.learning_rate * global_step * 1.0 / warmup_steps
                            fluid.layers.assign(decayed_lr, scheduled_lr)
                    if self.scheduler["linear_decay"]["start_point"] < 1:
                        linear_decay_start = int(
                            max_train_steps *
                            self.scheduler["linear_decay"]["start_point"])
                        if linear_decay_start < warmup_steps:
                            logger.warning(
                                "linear decay can not start during warmup process,"
                                "it will start after warmup ends!")
                            linear_decay_start = warmup_steps
                        with switch.case(global_step >= linear_decay_start):
                            decayed_lr = lr_scheduler.polynomial_decay(
                                learning_rate=self.learning_rate,
                                decay_steps=max_train_steps,
                                end_learning_rate=self.scheduler["linear_decay"]
                                ["end_learning_rate"],
                                power=1.0,
                                cycle=False)
                            fluid.layers.assign(decayed_lr, scheduled_lr)

        # slanted_triangle
        if self.scheduler["slanted_triangle"]["cut_fraction"]:
K
kinghuin 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
            cut_step = int(max_train_steps *
                           self.scheduler["slanted_triangle"]["cut_fraction"])
            ratio = self.scheduler["slanted_triangle"]["ratio"]
            global_step = lr_scheduler._decay_step_counter()
            with control_flow.Switch() as switch:
                with switch.case(global_step <= cut_step):
                    pct = global_step / cut_step
                    decayed_lr = self.learning_rate * (1 + pct *
                                                       (ratio - 1)) / ratio
                    fluid.layers.assign(decayed_lr, scheduled_lr)
                with switch.default():
                    pct = 1 - (global_step - cut_step) / (
                        max_train_steps - cut_step)
                    decayed_lr = self.learning_rate * (1 + pct *
                                                       (ratio - 1)) / ratio
                    fluid.layers.assign(decayed_lr, scheduled_lr)

383
        # set optimizer
K
kinghuin 已提交
384
        super(CombinedStrategy, self).__init__(
W
wuzewu 已提交
385 386 387
            optimizer_name=self._optimizer_name,
            learning_rate=scheduled_lr,
            **self.kwargs)
K
kinghuin 已提交
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        # discriminative learning rate
        # based on layer
        if self.scheduler["discriminative"]["params_layer"]:
            max_layer = max(
                self.scheduler["discriminative"]["params_layer"].values())
            for param in self.main_program.global_block().iter_parameters():
                if param.name in self.scheduler["discriminative"][
                        "params_layer"]:
                    param_layer = self.scheduler["discriminative"][
                        "params_layer"][param.name]
                    param.optimize_attr["learning_rate"] *= pow(
                        1.0 / self.scheduler["discriminative"]["factor"],
                        max_layer - param_layer)

        # based on blocks
K
kinghuin 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        if self.scheduler["discriminative"]["blocks"]:
            _block_layers = math.ceil(
                len(self.sorted_depth) /
                self.scheduler["discriminative"]["blocks"])
            power = 0
            for cnt, depth in enumerate(self.sorted_depth):
                for index, param in enumerate(self.depth_params_dict[depth]):
                    param.optimize_attr["learning_rate"] *= \
                        pow(1.0 / self.scheduler["discriminative"]["factor"], power)
                if cnt and cnt % _block_layers == 0:
                    power += 1
        return scheduled_lr

    def clip_handler(self):
        if self.clip["GlobalNorm"]:
            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=self.clip["GlobalNorm"]))
        elif self.clip["Norm"]:
            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByNorm(clip_norm=self.clip["Norm"]))

    def regularization_handler(self, loss, scheduled_lr):
        if self.regularization["L2"]:
            for param in self.main_program.global_block().all_parameters():
                param.regularizer = fluid.regularizer.L2Decay(
                    regularization_coeff=self.regularization["L2"])

        pretrained_params = get_pretrained_parameter(
            self.main_program, fluid.default_startup_program())

        if self.regularization["L2SP"]:
            #TODO: L2SP can only run in one process now
            for index, param in enumerate(pretrained_params):
                param.regularizer = L2SPDecayRegularizer(
                    regularization_coeff=self.regularization["L2SP"])

        _, param_grads = self.optimizer.minimize(loss)

        if self.regularization["weight_decay"]:
            param_list = {}
            for param in self.main_program.global_block().all_parameters():
                param_list[param.name] = param * 1.0
                param_list[param.name].stop_gradient = True

            for param, grad in param_grads:
                if self.exclude_from_weight_decay(param.name):
                    continue
                with param.block.program._optimized_guard(
                    [param, grad]), fluid.framework.name_scope("weight_decay"):
                    updated_param = param - param_list[
                        param.name] * self.regularization[
                            "weight_decay"] * scheduled_lr
                    fluid.layers.assign(output=param, input=updated_param)

    def execute(self, loss, data_reader, config, dev_count):
        # base information
        self.main_program = loss.block.program
        self.config = config

        # self.num_examples = {'train': -1, 'dev': -1, 'test': -1} before data_generator
465 466
        data_reader.data_generator(
            batch_size=config.batch_size, phase='train', shuffle=True)
K
kinghuin 已提交
467
        num_train_examples = data_reader.num_examples['train']
Z
Zeyu Chen 已提交
468

K
kinghuin 已提交
469
        max_train_steps = config.num_epoch * num_train_examples // config.batch_size // dev_count
Z
Zeyu Chen 已提交
470

K
kinghuin 已提交
471 472 473 474 475 476 477 478 479 480
        try:
            # nlp_reader
            _in_tokens = data_reader.in_tokens
            if _in_tokens:
                max_train_steps *= data_reader.max_seq_len
        except:
            # cv_reader without .in_tokens and .max_seq_len
            pass

        if self.scheduler["discriminative"]["blocks"] > 0 or self.scheduler[
481
                "gradual_unfreeze"]["blocks"] > 0:
K
kinghuin 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495
            self.depth_params_dict = get_depth_parameter(self.main_program)
            self.sorted_depth = sorted(
                self.depth_params_dict.keys(), reverse=True)
            self.max_depth = len(self.sorted_depth)

        # handle scheduler
        scheduled_lr = self.scheduler_handler(max_train_steps)

        # handle clip
        self.clip_handler()

        # handle regularization
        self.regularization_handler(loss, scheduled_lr)

496 497
        logger.info(self.__str__())

K
kinghuin 已提交
498 499 500 501 502 503 504 505 506 507 508 509
        return scheduled_lr, max_train_steps

    def exclude_from_weight_decay(self, name):
        if name.find("layer_norm") > -1:
            return True
        bias_suffix = ["_bias", "_b", ".b_0"]
        for suffix in bias_suffix:
            if name.endswith(suffix):
                return True
        return False

    def step(self):
510
        if self.scheduler["gradual_unfreeze"]["blocks"] > 0:
K
kinghuin 已提交
511 512
            self.epoch += 1
            if self.max_depth > 0 and self.epoch <= self.scheduler[
513
                    "gradual_unfreeze"]["blocks"]:
K
kinghuin 已提交
514
                set_gradual_unfreeze(
K
kinghuin 已提交
515
                    depth_params_dict=self.depth_params_dict,
K
kinghuin 已提交
516 517
                    unfreeze_depths=self.
                    sorted_depth[:self.max_depth * self.epoch //
518
                                 self.scheduler["gradual_unfreeze"]["blocks"]])
K
kinghuin 已提交
519 520 521 522
            else:
                logger.warning(
                    "The max op-depth in the network is %s. That results in that can't use the gradual unfreeze finetune strategy."
                    % (self.max_depth))
523 524 525 526 527 528 529 530 531 532 533 534 535 536
        elif self.scheduler["gradual_unfreeze"]["params_layer"]:
            max_layer = max(
                self.scheduler["gradual_unfreeze"]["params_layer"].values())
            if self.epoch <= max_layer:
                for param in self.main_program.global_block().iter_parameters():
                    if param.name in self.scheduler["gradual_unfreeze"][
                            "params_layer"]:
                        param_layer = self.scheduler["gradual_unfreeze"][
                            "params_layer"][param.name]
                        if param_layer >= max_layer - self.epoch:
                            param.stop_gradient = False
                        else:
                            param.stop_gradient = True
            self.epoch += 1
Z
Zeyu Chen 已提交
537
        else:
K
kinghuin 已提交
538
            pass
Z
Zeyu Chen 已提交
539 540

    def __str__(self):
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        self.clip = {"GlobalNorm": 0.0, "Norm": 0.0}

        strategy_name = ""
        strategy_name += "warmup, " if self.scheduler["warmup"] else ""
        strategy_name += "linear decay, " if self.scheduler["linear_decay"][
            "start_point"] < 1 else ""
        strategy_name += "noam decay, " if self.scheduler["noam_decay"] else ""
        strategy_name += "discriminative learning rate, " if self.scheduler[
            "discriminative"]["blocks"] or self.scheduler["discriminative"][
                "params_layer"] else ""
        strategy_name += "gradual unfreeze, " if self.scheduler[
            "gradual_unfreeze"]["blocks"] or self.scheduler["gradual_unfreeze"][
                "params_layer"] else ""
        strategy_name += "slanted triangle learning rate, " if self.scheduler[
            "slanted_triangle"] else ""

        strategy_name += "L2 regularization, " if self.regularization[
            "L2"] else ""
        strategy_name += "L2SP regularization, " if self.regularization[
            "L2SP"] else ""
        strategy_name += "weight decay regularization, " if self.regularization[
            "weight_decay"] else ""

        strategy_name += "GlobalNorm clip, " if self.clip["GlobalNorm"] else ""
        strategy_name += "Norm clip, " if self.clip["Norm"] else ""

        return "Strategy with %s" % (strategy_name)
W
wuzewu 已提交
568 569


K
kinghuin 已提交
570
class AdamWeightDecayStrategy(CombinedStrategy):
W
wuzewu 已提交
571 572
    def __init__(self,
                 learning_rate=1e-4,
K
kinghuin 已提交
573 574 575
                 lr_scheduler="linear_decay",
                 warmup_proportion=0.1,
                 weight_decay=0.01,
W
wuzewu 已提交
576 577
                 optimizer_name="adam",
                 **kwargs):
K
kinghuin 已提交
578 579 580 581 582 583 584 585
        scheduler = {"warmup": warmup_proportion}
        if lr_scheduler == "noam_decay":
            scheduler["noam_decay"] = True
        elif lr_scheduler == "linear_decay":
            scheduler["linear_decay"] = {
                "start_point": warmup_proportion,
                "end_learning_rate": 0,
            }
586
        else:
K
kinghuin 已提交
587 588 589 590 591 592 593 594 595
            raise ValueError("lr_scheduler {} is not setup "
                             "correctly".format(lr_scheduler))
        regularization = {"weight_decay": weight_decay}
        clip = {"GlobalNorm": 1.0}
        super(AdamWeightDecayStrategy, self).__init__(
            optimizer_name=optimizer_name,
            learning_rate=learning_rate,
            scheduler=scheduler,
            regularization=regularization,
W
wuzewu 已提交
596 597
            clip=clip,
            **kwargs)
W
wuzewu 已提交
598 599


K
kinghuin 已提交
600
class L2SPFinetuneStrategy(CombinedStrategy):
W
wuzewu 已提交
601 602 603
    def __init__(self,
                 learning_rate=1e-4,
                 optimizer_name="adam",
W
wuzewu 已提交
604 605
                 regularization_coeff=1e-3,
                 **kwargs):
K
kinghuin 已提交
606 607 608
        scheduler = {}
        regularization = {"L2SP": regularization_coeff}
        clip = {}
W
wuzewu 已提交
609
        super(L2SPFinetuneStrategy, self).__init__(
K
kinghuin 已提交
610 611 612 613
            optimizer_name=optimizer_name,
            learning_rate=learning_rate,
            scheduler=scheduler,
            regularization=regularization,
W
wuzewu 已提交
614 615
            clip=clip,
            **kwargs)
W
wuzewu 已提交
616 617


K
kinghuin 已提交
618 619 620 621
class DefaultFinetuneStrategy(CombinedStrategy):
    def __init__(self,
                 learning_rate=1e-4,
                 optimizer_name="adam",
W
wuzewu 已提交
622 623
                 regularization_coeff=1e-3,
                 **kwargs):
K
kinghuin 已提交
624 625 626 627 628 629 630 631 632
        scheduler = {}
        regularization = {"L2": regularization_coeff}
        clip = {}

        super(DefaultFinetuneStrategy, self).__init__(
            optimizer_name=optimizer_name,
            learning_rate=learning_rate,
            scheduler=scheduler,
            regularization=regularization,
W
wuzewu 已提交
633 634
            clip=clip,
            **kwargs)
W
wuzewu 已提交
635

K
kinghuin 已提交
636 637 638 639 640 641 642 643 644

class ULMFiTStrategy(CombinedStrategy):
    def __init__(self,
                 learning_rate=1e-4,
                 optimizer_name="adam",
                 cut_fraction=0.1,
                 ratio=32,
                 dis_blocks=3,
                 factor=2.6,
645
                 frz_blocks=3,
W
wuzewu 已提交
646 647
                 params_layer=None,
                 **kwargs):
K
kinghuin 已提交
648 649 650 651 652 653

        scheduler = {
            "slanted_triangle": {
                "cut_fraction": cut_fraction,
                "ratio": ratio
            },
654 655 656 657
            "gradual_unfreeze": {
                "blocks": frz_blocks,
                "params_layer": params_layer
            },
K
kinghuin 已提交
658 659
            "discriminative": {
                "blocks": dis_blocks,
660 661
                "factor": factor,
                "params_layer": params_layer
K
kinghuin 已提交
662 663 664 665 666 667 668 669 670
            }
        }
        regularization = {}
        clip = {}
        super(ULMFiTStrategy, self).__init__(
            optimizer_name=optimizer_name,
            learning_rate=learning_rate,
            scheduler=scheduler,
            regularization=regularization,
W
wuzewu 已提交
671 672
            clip=clip,
            **kwargs)