keypoint_infer.py 10.9 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os

import cv2
import numpy as np
import yaml

jm_12138's avatar
jm_12138 已提交
21
from .infer import Detector
jm_12138's avatar
jm_12138 已提交
22
from .keypoint_postprocess import HRNetPostProcess
jm_12138's avatar
jm_12138 已提交
23
from .keypoint_preprocess import expand_crop
jm_12138's avatar
jm_12138 已提交
24
from .visualize import visualize_pose
C
chenjian 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

# Global dictionary
KEYPOINT_SUPPORT_MODELS = {'HigherHRNet': 'keypoint_bottomup', 'HRNet': 'keypoint_topdown'}


class KeyPointDetector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        use_dark(bool): whether to use postprocess in DarkPose
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 use_dark=True):
        super(KeyPointDetector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold,
        )
        self.use_dark = use_dark

    def set_config(self, model_dir):
        return PredictConfig_KeyPoint(model_dir)

    def get_person_from_rect(self, image, results):
        # crop the person result from image
        valid_rects = results['boxes']
        rect_images = []
        new_rects = []
        org_rects = []
        for rect in valid_rects:
            rect_image, new_rect, org_rect = expand_crop(image, rect)
            if rect_image is None or rect_image.size == 0:
                continue
            rect_images.append(rect_image)
            new_rects.append(new_rect)
            org_rects.append(org_rect)
        return rect_images, new_rects, org_rects

    def postprocess(self, inputs, result):
        np_heatmap = result['heatmap']
        np_masks = result['masks']
        # postprocess output of predictor
        if KEYPOINT_SUPPORT_MODELS[self.pred_config.arch] == 'keypoint_bottomup':
            results = {}
            h, w = inputs['im_shape'][0]
            preds = [np_heatmap]
            if np_masks is not None:
                preds += np_masks
            preds += [h, w]
            keypoint_postprocess = HRNetPostProcess()
            kpts, scores = keypoint_postprocess(*preds)
            results['keypoint'] = kpts
            results['score'] = scores
            return results
        elif KEYPOINT_SUPPORT_MODELS[self.pred_config.arch] == 'keypoint_topdown':
            results = {}
            imshape = inputs['im_shape'][:, ::-1]
            center = np.round(imshape / 2.)
            scale = imshape / 200.
            keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
            kpts, scores = keypoint_postprocess(np_heatmap, center, scale)
            results['keypoint'] = kpts
            results['score'] = scores
            return results
        else:
            raise ValueError("Unsupported arch: {}, expect {}".format(self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))

    def predict(self, repeats=1):
        '''
        Args:
            repeats (int): repeat number for prediction
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
        # model prediction
        np_heatmap, np_masks = None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            heatmap_tensor = self.predictor.get_output_handle(output_names[0])
            np_heatmap = heatmap_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(), inds_k.copy_to_cpu()]
        result = dict(heatmap=np_heatmap, masks=np_masks)
        return result

    def predict_image(self, image_list, run_benchmark=False, repeats=1, visual=True):
        results = []
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
C
chenjian 已提交
156 157 158 159 160 161 162
            # preprocess
            inputs = self.preprocess(batch_image_list)

            # model prediction
            result = self.predict()
            # postprocess
            result = self.postprocess(inputs, result)
C
chenjian 已提交
163

C
chenjian 已提交
164 165 166 167
            if visual:
                if not os.path.exists(self.output_dir):
                    os.makedirs(self.output_dir)
                visualize(batch_image_list, result, visual_thresh=self.threshold, save_dir=self.output_dir)
C
chenjian 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))
        results = self.merge_batch_result(results)
        return results

    def predict_video(self, video_file, camera_id):
        video_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
            im_results = {}
            im_results['keypoint'] = [results['keypoint'], results['score']]
            im = visualize_pose(frame, im_results, visual_thresh=self.threshold, returnimg=True)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()


def create_inputs(imgs, im_info):
    """generate input for different model type
    Args:
        imgs (list(numpy)): list of image (np.ndarray)
        im_info (list(dict)): list of image info
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = np.stack(imgs, axis=0).astype('float32')
    im_shape = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'])).astype('float32'))
    inputs['im_shape'] = np.stack(im_shape, axis=0)
    return inputs


class PredictConfig_KeyPoint():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.tagmap = False
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
        if 'keypoint_bottomup' == self.archcls:
            self.tagmap = True
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type
        """
        for support_model in KEYPOINT_SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf['arch'], KEYPOINT_SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def visualize(image_list, results, visual_thresh=0.6, save_dir='output'):
    im_results = {}
    for i, image_file in enumerate(image_list):
        skeletons = results['keypoint']
        scores = results['score']
        skeleton = skeletons[i:i + 1]
        score = scores[i:i + 1]
        im_results['keypoint'] = [skeleton, score]
        visualize_pose(image_file, im_results, visual_thresh=visual_thresh, save_dir=save_dir)