module.py 7.7 KB
Newer Older
K
KP 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import importlib
import os
from typing import List

import numpy as np
import paddle
import paddle.nn as nn
from paddlehub.env import MODULE_HOME
from paddlehub.module.module import moduleinfo
from paddlehub.utils.log import logger
from paddlenlp.data import Pad
from parakeet.models import ConditionalWaveFlow, Tacotron2
from parakeet.models.lstm_speaker_encoder import LSTMSpeakerEncoder
28
import soundfile as sf
K
KP 已提交
29 30 31 32 33 34 35 36 37 38

from .audio_processor import SpeakerVerificationPreprocessor
from .chinese_g2p import convert_sentence
from .preprocess_transcription import voc_phones, voc_tones, phone_pad_token, tone_pad_token


@moduleinfo(
    name="lstm_tacotron2",
    version="1.0.0",
    summary="",
39
    author="paddlepaddle",
K
KP 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    author_email="",
    type="audio/voice_cloning",
)
class VoiceCloner(nn.Layer):
    def __init__(self, speaker_audio: str = None, output_dir: str = './'):
        super(VoiceCloner, self).__init__()

        self.sample_rate = 22050  # Hyper params for the following model ckpts.
        speaker_encoder_ckpt = os.path.join(MODULE_HOME, 'lstm_tacotron2', 'assets',
                                            'ge2e_ckpt_0.3/step-3000000.pdparams')
        synthesizer_ckpt = os.path.join(MODULE_HOME, 'lstm_tacotron2', 'assets',
                                        'tacotron2_aishell3_ckpt_0.3/step-450000.pdparams')
        vocoder_ckpt = os.path.join(MODULE_HOME, 'lstm_tacotron2', 'assets',
                                    'waveflow_ljspeech_ckpt_0.3/step-2000000.pdparams')

        # Speaker encoder
W
wuzewu 已提交
56 57 58 59 60 61 62 63 64 65 66 67
        self.speaker_processor = SpeakerVerificationPreprocessor(
            sampling_rate=16000,
            audio_norm_target_dBFS=-30,
            vad_window_length=30,
            vad_moving_average_width=8,
            vad_max_silence_length=6,
            mel_window_length=25,
            mel_window_step=10,
            n_mels=40,
            partial_n_frames=160,
            min_pad_coverage=0.75,
            partial_overlap_ratio=0.5)
K
KP 已提交
68 69 70 71 72
        self.speaker_encoder = LSTMSpeakerEncoder(n_mels=40, num_layers=3, hidden_size=256, output_size=256)
        self.speaker_encoder.set_state_dict(paddle.load(speaker_encoder_ckpt))
        self.speaker_encoder.eval()

        # Voice synthesizer
W
wuzewu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        self.synthesizer = Tacotron2(
            vocab_size=68,
            n_tones=10,
            d_mels=80,
            d_encoder=512,
            encoder_conv_layers=3,
            encoder_kernel_size=5,
            d_prenet=256,
            d_attention_rnn=1024,
            d_decoder_rnn=1024,
            attention_filters=32,
            attention_kernel_size=31,
            d_attention=128,
            d_postnet=512,
            postnet_kernel_size=5,
            postnet_conv_layers=5,
            reduction_factor=1,
            p_encoder_dropout=0.5,
            p_prenet_dropout=0.5,
            p_attention_dropout=0.1,
            p_decoder_dropout=0.1,
            p_postnet_dropout=0.5,
            d_global_condition=256,
            use_stop_token=False)
K
KP 已提交
97 98 99 100
        self.synthesizer.set_state_dict(paddle.load(synthesizer_ckpt))
        self.synthesizer.eval()

        # Vocoder
W
wuzewu 已提交
101 102
        self.vocoder = ConditionalWaveFlow(
            upsample_factors=[16, 16], n_flows=8, n_layers=8, n_group=16, channels=128, n_mels=80, kernel_size=[3, 3])
K
KP 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        self.vocoder.set_state_dict(paddle.load(vocoder_ckpt))
        self.vocoder.eval()

        # Speaking embedding
        self._speaker_embedding = None
        if speaker_audio is None or not os.path.isfile(speaker_audio):
            speaker_audio = os.path.join(MODULE_HOME, 'lstm_tacotron2', 'assets', 'voice_cloning.wav')
            logger.warning(f'Due to no speaker audio is specified, speaker encoder will use defult '
                           f'waveform({speaker_audio}) to extract speaker embedding. You can use '
                           '"set_speaker_embedding()" method to reset a speaker audio for voice cloning.')
        self.set_speaker_embedding(speaker_audio)

        self.output_dir = os.path.abspath(output_dir)
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)

    def get_speaker_embedding(self):
        return self._speaker_embedding.numpy()

    def set_speaker_embedding(self, speaker_audio: str):
        assert os.path.exists(speaker_audio), f'Speaker audio file: {speaker_audio} does not exists.'
        mel_sequences = self.speaker_processor.extract_mel_partials(
            self.speaker_processor.preprocess_wav(speaker_audio))
        self._speaker_embedding = self.speaker_encoder.embed_utterance(paddle.to_tensor(mel_sequences))
        logger.info(f'Speaker embedding has been set from file: {speaker_audio}')

    def forward(self, phones: paddle.Tensor, tones: paddle.Tensor, speaker_embeddings: paddle.Tensor):
        outputs = self.synthesizer.infer(phones, tones=tones, global_condition=speaker_embeddings)
        mel_input = paddle.transpose(outputs["mel_outputs_postnet"], [0, 2, 1])
        waveforms = self.vocoder.infer(mel_input)
        return waveforms

    def _convert_text_to_input(self, text: str):
        """
        Convert input string to phones and tones.
        """
        phones, tones = convert_sentence(text)
        phones = np.array([voc_phones.lookup(item) for item in phones], dtype=np.int64)
        tones = np.array([voc_tones.lookup(item) for item in tones], dtype=np.int64)
        return phones, tones

    def _batchify(self, data: List[str], batch_size: int):
        """
        Generate input batches.
        """
        phone_pad_func = Pad(voc_phones.lookup(phone_pad_token))
        tone_pad_func = Pad(voc_tones.lookup(tone_pad_token))

        def _parse_batch(batch_data):
            phones, tones = zip(*batch_data)
            speaker_embeddings = paddle.expand(self._speaker_embedding, shape=(len(batch_data), -1))
            return phone_pad_func(phones), tone_pad_func(tones), speaker_embeddings

        examples = []  # [(phones, tones), ...]
        for text in data:
            examples.append(self._convert_text_to_input(text))

        # Seperates data into some batches.
        one_batch = []
        for example in examples:
            one_batch.append(example)
            if len(one_batch) == batch_size:
                yield _parse_batch(one_batch)
                one_batch = []
        if one_batch:
            yield _parse_batch(one_batch)

    def generate(self, data: List[str], batch_size: int = 1, use_gpu: bool = False):
        assert self._speaker_embedding is not None, f'Set speaker embedding before voice cloning.'

        paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
        batches = self._batchify(data, batch_size)

        results = []
        for batch in batches:
            phones, tones, speaker_embeddings = map(paddle.to_tensor, batch)
            waveforms = self(phones, tones, speaker_embeddings).numpy()
            results.extend(list(waveforms))

        files = []
        for idx, waveform in enumerate(results):
            output_wav = os.path.join(self.output_dir, f'{idx+1}.wav')
            sf.write(output_wav, waveform, samplerate=self.sample_rate)
            files.append(output_wav)

        return files