# 快速体验 安装PaddleHub成功后,执行命令[hub run](tutorial/cmdintro.md),可以快速体验PaddleHub无需代码、一键预测的命令行功能,如下三个示例: 使用[词法分析](http://www.paddlepaddle.org.cn/hub?filter=category&value=LexicalAnalysis)模型LAC进行分词 ```shell $ hub run lac --input_text "今天是个好日子" [{'word': ['今天', '是', '个', '好日子'], 'tag': ['TIME', 'v', 'q', 'n']}] ``` 使用[情感分析](http://www.paddlepaddle.org.cn/hub?filter=category&value=SentimentAnalysis)模型Senta对句子进行情感预测 ```shell $ hub run senta_bilstm --input_text "今天天气真好" {'text': '今天天气真好', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9798, 'negative_probs': 0.0202}] ``` 使用[目标检测](http://www.paddlepaddle.org.cn/hub?filter=category&value=ObjectDetection)模型Ultra-Light-Fast-Generic-Face-Detector-1MB对图片进行人脸识别 ```shell $ wget https://paddlehub.bj.bcebos.com/resources/test_image.jpg $ hub run ultra_light_fast_generic_face_detector_1mb_640 --input_path test_image.jpg ``` ![人脸识别结果](./imgs/face_detection_result.jpeg) 使用[图像分割](https://www.paddlepaddle.org.cn/hub?filter=en_category&value=ImageSegmentation)模型ace2p对图片进行tu ```shell $ wget https://paddlehub.bj.bcebos.com/resources/test_image.jpg $ hub run ace2p --input_path test_image.jpg ``` ![图像分割结果](./imgs/img_seg_result.jpeg) 除了上述三类模型外,PaddleHub还发布了图像分类、语义模型、视频分类、图像生成、图像分割、文本审核、关键点检测等业界主流模型,更多PaddleHub已经发布的模型,请前往 https://www.paddlepaddle.org.cn/hub 查看