strategy.py 5.4 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
19 20
import os
import multiprocessing
21

Z
Zeyu Chen 已提交
22 23
import paddle.fluid as fluid

W
wuzewu 已提交
24
from paddlehub.finetune.optimization import adam_weight_decay_optimization
Z
Zeyu Chen 已提交
25 26


W
wuzewu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
def get_pretrained_parameter(main_program, start_program):
    pretrained_parameters = []
    global_block = main_program.global_block()
    for op in global_block.ops[::-1]:
        for input_arg in op.input_arg_names:
            var = global_block.var(input_arg)
            if isinstance(
                    var, fluid.framework.Parameter
            ) and input_arg not in start_program.global_block().vars:
                pretrained_parameters.append(var)

    return pretrained_parameters


Z
Zeyu Chen 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class DefaultStrategy(object):
    def __init__(self, learning_rate=1e-4, optimizer_name="adam"):
        self.learning_rate = learning_rate
        self._optimizer_name = optimizer_name

    def execute(self, loss):
        if self.optimizer.lower() == "adam":
            self.optimizer = fluid.optimizer.Adam(
                learning_rate=self.learning_rate)
        elif self.optimizer.lower() == "sgd":
            self.optimizer = fluid.optimizer.SGD(
                learning_rate=self.learning_rate)

        if self.optimizer is not None:
            self.optimizer.minimize(loss)
        else:
            raise ValueError("DefaultStrategy's optimizer is None")

Z
Zeyu Chen 已提交
59 60 61 62
    # TODO complete __str__()
    def __str__(self):
        return "DefaultStrategy"

Z
Zeyu Chen 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

class BERTFinetuneStrategy(DefaultStrategy):
    def __init__(self,
                 learning_rate=1e-4,
                 warmup_strategy="linear_warmup_decay",
                 warmup_proportion=0.0,
                 weight_decay=0.01,
                 optimizer_name=None):
        super().__init__(
            learning_rate=learning_rate, optimizer_name=optimizer_name)
        # check strategy correctness
        if warmup_strategy not in ["linear_warmup_decay", "noam_decay"]:
            raise ValueError("warmup strategy {} is not setup "
                             "correctly".format(warmup_strategy))
        self._warmup_strategy = warmup_strategy
        self._warmup_proportion = warmup_proportion
        self._weight_decay = weight_decay

    @property
    def warmup_strategy(self):
        return self._warmup_strategy

    @property
    def warmup_proportion(self):
        return self._warmup_proportion

    @property
    def weight_decay(self):
        return self._weight_decay

    def execute(self, loss, main_program, data_reader, config):
        # calculate wamrup step
        dev_count = self._get_dev_count(config)
        num_train_examples = data_reader.get_num_examples(phase='train')
        max_train_steps = config.num_epoch * num_train_examples // config.batch_size // dev_count
        warmup_steps = int(max_train_steps * self.warmup_proportion)

        scheduled_lr = adam_weight_decay_optimization(
            loss, warmup_steps, max_train_steps, self.learning_rate,
            main_program, self.weight_decay, self.warmup_strategy)

        return scheduled_lr

    def _get_dev_count(self, config):
        if config.use_cuda:
            dev_count = fluid.core.get_cuda_device_count()
        else:
            dev_count = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

        return dev_count
Z
Zeyu Chen 已提交
114 115 116 117

    # TODO complete __str__()
    def __str__(self):
        return "BERTFintuneStrategy"
W
wuzewu 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153


class DefaultFinetuneStrategy(DefaultStrategy):
    def __init__(self,
                 learning_rate=1e-4,
                 optimizer_name="adam",
                 regularization_coeff=1e-3):
        super(DefaultFinetuneStrategy, self).__init__(
            learning_rate=learning_rate, optimizer_name=optimizer_name)
        self.learning_rate = learning_rate
        self._optimizer_name = optimizer_name
        self.regularization_coeff = regularization_coeff

    def execute(self, loss):
        if self._optimizer_name.lower() == "adam":
            self.optimizer = fluid.optimizer.Adam(
                learning_rate=self.learning_rate)
        elif self._optimizer_name.lower() == "sgd":
            self.optimizer = fluid.optimizer.SGD(
                learning_rate=self.learning_rate)

        # get pretrained parameters
        program = loss.block.program
        global_block = program.global_block()
        pretrained_params = get_pretrained_parameter(
            program, fluid.default_startup_program())

        # set parameter attrs
        for index, param in enumerate(pretrained_params):
            param.regularizer = fluid.regularizer.L2Decay(
                regularization_coeff=self.regularization_coeff)

        if self.optimizer is not None:
            self.optimizer.minimize(loss)
        else:
            raise ValueError("DefaultFinetuneStrategy's optimizer is None")