evaluate.py 7.7 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeyu Chen 已提交
15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
19 20
import time

Z
Zeyu Chen 已提交
21
import paddle.fluid as fluid
22 23
import numpy as np

Z
Zeyu Chen 已提交
24
from paddlehub.common.logger import logger
25
import paddlehub as hub
Z
Zeyu Chen 已提交
26

Z
Zeyu Chen 已提交
27 28 29 30 31 32 33 34

def evaluate_cls_task(task, data_reader, feed_list, phase="test", config=None):
    logger.info("Evaluation on {} dataset start".format(phase))
    inference_program = task.inference_program()
    main_program = task.main_program()
    loss = task.variable("loss")
    accuracy = task.variable("accuracy")
    batch_size = config.batch_size
Z
Zeyu Chen 已提交
35
    place, dev_count = hub.common.get_running_device_info(config)
Z
Zeyu Chen 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    exe = fluid.Executor(place=place)
    with fluid.program_guard(inference_program):
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        num_eval_examples = acc_sum = loss_sum = 0
        test_reader = data_reader.data_generator(
            batch_size=batch_size, phase=phase)
        eval_time_begin = time.time()
        eval_step = 0
        for batch in test_reader():
            num_batch_examples = len(batch)
            eval_step += 1
            loss_v, accuracy_v = exe.run(
                feed=data_feeder.feed(batch),
                fetch_list=[loss.name, accuracy.name])
            num_eval_examples += num_batch_examples
51 52
            if num_eval_examples % 10000 == 0:
                logger.info("{} examples evaluated.".format(num_eval_examples))
Z
Zeyu Chen 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            acc_sum += accuracy_v * num_batch_examples
            loss_sum += loss_v * num_batch_examples
        eval_time_used = time.time() - eval_time_begin

        avg_loss = loss_sum / num_eval_examples
        avg_acc = acc_sum / num_eval_examples
        eval_speed = eval_step / eval_time_used
    logger.info(
        "[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]" %
        (phase, avg_loss, avg_acc, eval_speed))

    return avg_loss, avg_acc, eval_speed


def evaluate_seq_labeling_task(task,
                               data_reader,
                               feed_list,
                               phase="test",
                               config=None):
    fetch_list = [
        task.variable("labels").name,
        task.variable("infers").name,
        task.variable("seq_len").name,
        task.variable("loss").name
    ]
    logger.info("Evaluation on {} dataset start".format(phase))
    inference_program = task.inference_program()
    batch_size = config.batch_size
Z
Zeyu Chen 已提交
81
    place, dev_count = hub.common.get_running_device_info(config)
Z
Zeyu Chen 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    exe = fluid.Executor(place=place)
    num_labels = len(data_reader.get_labels())
    with fluid.program_guard(inference_program):
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        num_eval_examples = acc_sum = loss_sum = 0
        test_reader = data_reader.data_generator(
            batch_size=batch_size, phase=phase)
        eval_time_begin = time.time()
        eval_step = 0
        total_label, total_infer, total_correct = 0.0, 0.0, 0.0
        for batch in test_reader():
            num_batch_examples = len(batch)
            eval_step += 1
            np_labels, np_infers, np_lens, _ = exe.run(
                feed=data_feeder.feed(batch), fetch_list=fetch_list)
            label_num, infer_num, correct_num = chunk_eval(
                np_labels, np_infers, np_lens, num_labels, dev_count)

            total_infer += infer_num
            total_label += label_num
            total_correct += correct_num

        precision, recall, f1 = calculate_f1(total_label, total_infer,
                                             total_correct)
        eval_time_used = time.time() - eval_time_begin
        eval_speed = eval_step / eval_time_used
        logger.info(
            "[%s evaluation] F1-Score=%f, precision=%f, recall=%f [step/sec: %.2f]"
            % (phase, f1, precision, recall, eval_speed))


# Sequence label evaluation functions
def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1):
    def extract_bio_chunk(seq):
        chunks = []
        cur_chunk = None
        null_index = tag_num - 1
        for index in range(len(seq)):
            tag = seq[index]
            tag_type = tag // 2
            tag_pos = tag % 2

            if tag == null_index:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = None
                continue

            if tag_pos == 0:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = {}
                cur_chunk = {"st": index, "en": index + 1, "type": tag_type}

            else:
                if cur_chunk is None:
                    cur_chunk = {"st": index, "en": index + 1, "type": tag_type}
                    continue

                if cur_chunk["type"] == tag_type:
                    cur_chunk["en"] = index + 1
                else:
                    chunks.append(cur_chunk)
                    cur_chunk = {"st": index, "en": index + 1, "type": tag_type}

        if cur_chunk is not None:
            chunks.append(cur_chunk)
        return chunks

    null_index = tag_num - 1
    num_label = 0
    num_infer = 0
    num_correct = 0
    labels = np_labels.reshape([-1]).astype(np.int32).tolist()
    infers = np_infers.reshape([-1]).astype(np.int32).tolist()
    all_lens = np_lens.reshape([dev_count, -1]).astype(np.int32).tolist()

    base_index = 0
    for dev_index in range(dev_count):
        lens = all_lens[dev_index]
        max_len = 0
        for l in lens:
            max_len = max(max_len, l)

        for i in range(len(lens)):
            seq_st = base_index + i * max_len + 1
            seq_en = seq_st + (lens[i] - 2)
            infer_chunks = extract_bio_chunk(infers[seq_st:seq_en])
            label_chunks = extract_bio_chunk(labels[seq_st:seq_en])
            num_infer += len(infer_chunks)
            num_label += len(label_chunks)

            infer_index = 0
            label_index = 0
            while label_index < len(label_chunks) \
                   and infer_index < len(infer_chunks):
                if infer_chunks[infer_index]["st"] \
                    < label_chunks[label_index]["st"]:
                    infer_index += 1
                elif infer_chunks[infer_index]["st"] \
                    > label_chunks[label_index]["st"]:
                    label_index += 1
                else:
                    if infer_chunks[infer_index]["en"] \
                        == label_chunks[label_index]["en"] \
                        and infer_chunks[infer_index]["type"] \
                        == label_chunks[label_index]["type"]:
                        num_correct += 1

                    infer_index += 1
                    label_index += 1

        base_index += max_len * len(lens)

    return num_label, num_infer, num_correct


def calculate_f1(num_label, num_infer, num_correct):
    if num_infer == 0:
        precision = 0.0
    else:
        precision = num_correct * 1.0 / num_infer

    if num_label == 0:
        recall = 0.0
    else:
        recall = num_correct * 1.0 / num_label

    if num_correct == 0:
        f1 = 0.0
    else:
        f1 = 2 * precision * recall / (precision + recall)
    return precision, recall, f1