evaluate.py 4.2 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
Z
Zeyu Chen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeyu Chen 已提交
16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
20 21
import time

Z
Zeyu Chen 已提交
22
import paddle.fluid as fluid
23 24
import numpy as np

Z
Zeyu Chen 已提交
25
from paddlehub.common.logger import logger
26
import paddlehub as hub
Z
Zeyu Chen 已提交
27

Z
Zeyu Chen 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

# Sequence label evaluation functions
def chunk_eval(np_labels, np_infers, np_lens, tag_num, dev_count=1):
    def extract_bio_chunk(seq):
        chunks = []
        cur_chunk = None
        null_index = tag_num - 1
        for index in range(len(seq)):
            tag = seq[index]
            tag_type = tag // 2
            tag_pos = tag % 2

            if tag == null_index:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = None
                continue

            if tag_pos == 0:
                if cur_chunk is not None:
                    chunks.append(cur_chunk)
                    cur_chunk = {}
                cur_chunk = {"st": index, "en": index + 1, "type": tag_type}

            else:
                if cur_chunk is None:
                    cur_chunk = {"st": index, "en": index + 1, "type": tag_type}
                    continue

                if cur_chunk["type"] == tag_type:
                    cur_chunk["en"] = index + 1
                else:
                    chunks.append(cur_chunk)
                    cur_chunk = {"st": index, "en": index + 1, "type": tag_type}

        if cur_chunk is not None:
            chunks.append(cur_chunk)
        return chunks

    null_index = tag_num - 1
    num_label = 0
    num_infer = 0
    num_correct = 0
    labels = np_labels.reshape([-1]).astype(np.int32).tolist()
    infers = np_infers.reshape([-1]).astype(np.int32).tolist()
    all_lens = np_lens.reshape([dev_count, -1]).astype(np.int32).tolist()

    base_index = 0
    for dev_index in range(dev_count):
        lens = all_lens[dev_index]
        max_len = 0
        for l in lens:
            max_len = max(max_len, l)

        for i in range(len(lens)):
            seq_st = base_index + i * max_len + 1
            seq_en = seq_st + (lens[i] - 2)
            infer_chunks = extract_bio_chunk(infers[seq_st:seq_en])
            label_chunks = extract_bio_chunk(labels[seq_st:seq_en])
            num_infer += len(infer_chunks)
            num_label += len(label_chunks)

            infer_index = 0
            label_index = 0
            while label_index < len(label_chunks) \
                   and infer_index < len(infer_chunks):
                if infer_chunks[infer_index]["st"] \
                    < label_chunks[label_index]["st"]:
                    infer_index += 1
                elif infer_chunks[infer_index]["st"] \
                    > label_chunks[label_index]["st"]:
                    label_index += 1
                else:
                    if infer_chunks[infer_index]["en"] \
                        == label_chunks[label_index]["en"] \
                        and infer_chunks[infer_index]["type"] \
                        == label_chunks[label_index]["type"]:
                        num_correct += 1

                    infer_index += 1
                    label_index += 1

        base_index += max_len * len(lens)

    return num_label, num_infer, num_correct


def calculate_f1(num_label, num_infer, num_correct):
    if num_infer == 0:
        precision = 0.0
    else:
        precision = num_correct * 1.0 / num_infer

    if num_label == 0:
        recall = 0.0
    else:
        recall = num_correct * 1.0 / num_label

    if num_correct == 0:
        f1 = 0.0
    else:
        f1 = 2 * precision * recall / (precision + recall)
    return precision, recall, f1