predict.py 3.2 KB
Newer Older
S
Steffy-zxf 已提交
1
#coding:utf-8
2 3 4 5 6 7 8 9 10 11 12
import argparse
import os

import paddle.fluid as fluid
import paddlehub as hub
import numpy as np

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--use_gpu",        type=bool,  default=False,                      help="Whether use GPU for predict.")
parser.add_argument("--checkpoint_dir", type=str,   default="paddlehub_finetune_ckpt",  help="Path to save log data.")
W
wuzewu 已提交
13
parser.add_argument("--batch_size",     type=int,   default=16,                         help="Total examples' number in batch for training.")
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
parser.add_argument("--module",         type=str,   default="resnet50",                 help="Module used as a feature extractor.")
parser.add_argument("--dataset",        type=str,   default="flowers",                  help="Dataset to finetune.")
# yapf: enable.

module_map = {
    "resnet50": "resnet_v2_50_imagenet",
    "resnet101": "resnet_v2_101_imagenet",
    "resnet152": "resnet_v2_152_imagenet",
    "mobilenet": "mobilenet_v2_imagenet",
    "nasnet": "nasnet_imagenet",
    "pnasnet": "pnasnet_imagenet"
}


def predict(args):
W
wuzewu 已提交
29 30
    module = hub.Module(name=args.module)
    input_dict, output_dict, program = module.context(trainable=True)
31

32
    if args.dataset.lower() == "flowers":
33
        dataset = hub.dataset.Flowers()
34 35 36 37 38 39 40 41 42 43
    elif args.dataset.lower() == "dogcat":
        dataset = hub.dataset.DogCat()
    elif args.dataset.lower() == "indoor67":
        dataset = hub.dataset.Indoor67()
    elif args.dataset.lower() == "food101":
        dataset = hub.dataset.Food101()
    elif args.dataset.lower() == "stanforddogs":
        dataset = hub.dataset.StanfordDogs()
    else:
        raise ValueError("%s dataset is not defined" % args.dataset)
44 45 46 47 48 49

    data_reader = hub.reader.ImageClassificationReader(
        image_width=module.get_expected_image_width(),
        image_height=module.get_expected_image_height(),
        images_mean=module.get_pretrained_images_mean(),
        images_std=module.get_pretrained_images_std(),
W
wuzewu 已提交
50
        dataset=dataset)
51 52

    feature_map = output_dict["feature_map"]
W
wuzewu 已提交
53

54 55 56
    img = input_dict["image"]
    feed_list = [img.name]

W
wuzewu 已提交
57 58 59 60 61 62
    config = hub.RunConfig(
        use_cuda=args.use_gpu,
        batch_size=args.batch_size,
        enable_memory_optim=False,
        checkpoint_dir=args.checkpoint_dir,
        strategy=hub.finetune.strategy.DefaultFinetuneStrategy())
63

W
wuzewu 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    task = hub.ClassifierTask(
        data_reader=data_reader,
        feed_list=feed_list,
        feature=feature_map,
        num_classes=dataset.num_labels,
        config=config)

    data = ["./test/test_img_daisy.jpg", "./test/test_img_roses.jpg"]
    label_map = dataset.label_dict()
    for result in task.predict(data=data):
        result = np.argmax(result, axis=2)
        index = 0
        for batch in result:
            for predict_result in batch:
                index += 1
                predict_result = label_map[predict_result]
                print("input %i is %s, and the predict result is %s" %
                      (index, data[index - 1], predict_result))
82 83 84 85 86 87 88 89 90 91


if __name__ == "__main__":
    args = parser.parse_args()
    if not args.module in module_map:
        hub.logger.error("module should in %s" % module_map.keys())
        exit(1)
    args.module = module_map[args.module]

    predict(args)