resnet.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import ginet_resnet50vd_cityscapes.layers as L


class BasicBlock(nn.Layer):
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 stride: int,
                 shortcut: bool = True,
                 if_first: bool = False,
                 name: str = None):
        super(BasicBlock, self).__init__()
        self.stride = stride
        self.conv0 = L.ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2a")
        self.conv1 = L.ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = L.ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv1, act='relu')

        return y


class ResNet50_vd(nn.Layer):
    def __init__(self,
                 multi_grid: tuple = (1, 2, 4)):
        super(ResNet50_vd, self).__init__()
        depth = [3, 4, 6, 3]
        num_channels = [64, 256, 512, 1024] 
        num_filters = [64, 128, 256, 512]
        self.feat_channels = [c * 4 for c in num_filters]
        dilation_dict = {2: 2, 3: 4}
        self.conv1_1 = L.ConvBNLayer(
            in_channels=3,
            out_channels=32,
            kernel_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = L.ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = L.ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
        self.stage_list = []

        for block in range(len(depth)):
            shortcut = False
            block_list = []
            for i in range(depth[block]):
                conv_name = "res" + str(block + 2) + chr(97 + i)
                dilation_rate = dilation_dict[
                    block] if dilation_dict and block in dilation_dict else 1
                if block == 3:
                    dilation_rate = dilation_rate * multi_grid[i]
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    L.BottleneckBlock(
                        in_channels=num_channels[block]
                        if i == 0 else num_filters[block] * 4,
                        out_channels=num_filters[block],
                        stride=2 if i == 0 and block != 0
                                    and dilation_rate == 1 else 1,
                        shortcut=shortcut,
                        if_first=block == i == 0,
                        name=conv_name,
                        dilation=dilation_rate))
                block_list.append(bottleneck_block)
                shortcut = True
            self.stage_list.append(block_list)

    def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        feat_list = []
        for stage in self.stage_list:
            for block in stage:
                y = block(y)
            feat_list.append(y)
        return feat_list