resnet.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddleseg.models import layers
from paddleseg.utils import utils

__all__ = ["ResNet50_vd"]


class ConvBNLayer(nn.Layer):
    """Basic conv bn relu layer."""
    
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: int,
            stride: int = 1,
            dilation: int = 1,
            groups: int = 1,
            is_vd_mode: bool = False,
            act: str = None,
    ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = nn.AvgPool2D(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 if dilation == 1 else 0,
            dilation=dilation,
            groups=groups,
            bias_attr=False)

        self._batch_norm = layers.SyncBatchNorm(out_channels)
        self._act_op = layers.Activation(act=act)

    def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        y = self._act_op(y)

        return y


class BottleneckBlock(nn.Layer):
    """Residual bottleneck block"""
    
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 stride: int,
                 shortcut: bool = True,
                 if_first: bool = False,
                 dilation: int = 1):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            act='relu')

        self.dilation = dilation

        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=stride,
            act='relu',
            dilation=dilation)
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels * 4,
                kernel_size=1,
                stride=1,
                is_vd_mode=False if if_first or stride == 1 else True)

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
        y = self.conv0(inputs)

        ####################################################################
        # If given dilation rate > 1, using corresponding padding.
        # The performance drops down without the follow padding.
        if self.dilation > 1:
            padding = self.dilation
            y = F.pad(y, [padding, padding, padding, padding])
        #####################################################################

        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
        return y


class BasicBlock(nn.Layer):
    """Basic residual block"""
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 stride: int,
                 shortcut: bool = True,
                 if_first: bool = False):
        super(BasicBlock, self).__init__()
        self.stride = stride
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=stride,
            act='relu')
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                is_vd_mode=False if if_first else True)

        self.shortcut = shortcut

    def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)

        return y


class ResNet_vd(nn.Layer):
    """
    The ResNet_vd implementation based on PaddlePaddle.

    The original article refers to Jingdong
    Tong He, et, al. "Bag of Tricks for Image Classification with Convolutional Neural Networks"
    (https://arxiv.org/pdf/1812.01187.pdf).

    """

    def __init__(self,
                 input_channels: int = 3,
                 layers: int = 50,
                 output_stride: int = 32,
                 multi_grid: tuple = (1, 1, 1),
                 pretrained: str = None):
        super(ResNet_vd, self).__init__()

        self.conv1_logit = None  # for gscnn shape stream
        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512, 1024
                        ] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        # for channels of four returned stages
        self.feat_channels = [c * 4 for c in num_filters
                              ] if layers >= 50 else num_filters
        self.feat_channels = [64] + self.feat_channels

        dilation_dict = None
        if output_stride == 8:
            dilation_dict = {2: 2, 3: 4}
        elif output_stride == 16:
            dilation_dict = {3: 2}

        self.conv1_1 = ConvBNLayer(
            in_channels=input_channels,
            out_channels=32,
            kernel_size=3,
            stride=2,
            act='relu')
        self.conv1_2 = ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu')
        self.conv1_3 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu')
        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)

        # self.block_list = []
        self.stage_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)

                    ###############################################################################
                    # Add dilation rate for some segmentation tasks, if dilation_dict is not None.
                    dilation_rate = dilation_dict[
                        block] if dilation_dict and block in dilation_dict else 1

                    # Actually block here is 'stage', and i is 'block' in 'stage'
                    # At the stage 4, expand the the dilation_rate if given multi_grid
                    if block == 3:
                        dilation_rate = dilation_rate * multi_grid[i]
                    ###############################################################################

                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0
                            and dilation_rate == 1 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            dilation=dilation_rate))

                    block_list.append(bottleneck_block)
                    shortcut = True
                self.stage_list.append(block_list)
        else:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0))
                    block_list.append(basic_block)
                    shortcut = True
                self.stage_list.append(block_list)

        self.pretrained = pretrained

    def forward(self, inputs: paddle.Tensor) -> paddle.Tensor:
        feat_list = []
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        feat_list.append(y)

        y = self.pool2d_max(y)

        # A feature list saves the output feature map of each stage.
        for stage in self.stage_list:
            for block in stage:
                y = block(y)
            feat_list.append(y)

        return feat_list


def ResNet50_vd(**args):
    model = ResNet_vd(layers=50, **args)
    return model