processor.py 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import base64
from typing import Callable, Union, List, Tuple

import cv2
import numpy as np
import paddle
import paddle.nn.functional as F
from paddleseg.transforms import functional
from PIL import Image


class Compose:
    """
    Do transformation on input data with corresponding pre-processing and augmentation operations.
    The shape of input data to all operations is [height, width, channels].
    """

    def __init__(self, transforms: Callable, to_rgb: bool = True):
        if not isinstance(transforms, list):
            raise TypeError('The transforms must be a list!')
        self.transforms = transforms
        self.to_rgb = to_rgb

    def __call__(self, data: dict) -> dict:

        if 'trans_info' not in data:
            data['trans_info'] = []
        for op in self.transforms:
            data = op(data)
            if data is None:
                return None

        data['img'] = np.transpose(data['img'], (2, 0, 1))
        for key in data.get('gt_fields', []):
            if len(data[key].shape) == 2:
                continue
            data[key] = np.transpose(data[key], (2, 0, 1))

        return data


class LoadImages:
    """
    Read images from image path.

    Args:
        to_rgb (bool, optional): If converting image to RGB color space. Default: True.
    """
    def __init__(self, to_rgb: bool = True):
        self.to_rgb = to_rgb

    def __call__(self, data: dict) -> dict:

        if isinstance(data['img'], str):
            data['img'] = cv2.imread(data['img'])

        for key in data.get('gt_fields', []):
            if isinstance(data[key], str):
                data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED)
            # if alpha and trimap has 3 channels, extract one.
            if key in ['alpha', 'trimap']:
                if len(data[key].shape) > 2:
                    data[key] = data[key][:, :, 0]

        if self.to_rgb:
            data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
            for key in data.get('gt_fields', []):
                if len(data[key].shape) == 2:
                    continue
                data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB)

        return data


class ResizeByShort:
    """
    Resize the short side of an image to given size, and then scale the other side proportionally.

    Args:
        short_size (int): The target size of short side.
    """

    def __init__(self, short_size: int =512):
        self.short_size = short_size

    def __call__(self, data: dict) -> dict:

        data['trans_info'].append(('resize', data['img'].shape[0:2]))
        data['img'] = functional.resize_short(data['img'], self.short_size)
        for key in data.get('gt_fields', []):
            data[key] = functional.resize_short(data[key], self.short_size)
        return data


class ResizeToIntMult:
    """
    Resize to some int muitple, d.g. 32.
    """

    def __init__(self, mult_int: int = 32):
        self.mult_int = mult_int

    def __call__(self, data: dict) -> dict:
        data['trans_info'].append(('resize', data['img'].shape[0:2]))

        h, w = data['img'].shape[0:2]
        rw = w - w % 32
        rh = h - h % 32
        data['img'] = functional.resize(data['img'], (rw, rh))
        for key in data.get('gt_fields', []):
            data[key] = functional.resize(data[key], (rw, rh))

        return data


class Normalize:
    """
    Normalize an image.

    Args:
        mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5].
        std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5].

    Raises:
        ValueError: When mean/std is not list or any value in std is 0.
    """

    def __init__(self, mean: Union[List[float], Tuple[float]] = (0.5, 0.5, 0.5), std: Union[List[float], Tuple[float]] = (0.5, 0.5, 0.5)):
        self.mean = mean
        self.std = std
        if not (isinstance(self.mean, (list, tuple))
                and isinstance(self.std, (list, tuple))):
            raise ValueError(
                "{}: input type is invalid. It should be list or tuple".format(
                    self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))

    def __call__(self, data: dict) -> dict:
        mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
        std = np.array(self.std)[np.newaxis, np.newaxis, :]
        data['img'] = functional.normalize(data['img'], mean, std)
        if 'fg' in data.get('gt_fields', []):
            data['fg'] = functional.normalize(data['fg'], mean, std)
        if 'bg' in data.get('gt_fields', []):
            data['bg'] = functional.normalize(data['bg'], mean, std)

        return data


def reverse_transform(alpha: paddle.Tensor, trans_info: List[str]):
    """recover pred to origin shape"""
    for item in trans_info[::-1]:
        if item[0] == 'resize':
            h, w = item[1][0], item[1][1]
            alpha = F.interpolate(alpha, [h, w], mode='bilinear')
        elif item[0] == 'padding':
            h, w = item[1][0], item[1][1]
            alpha = alpha[:, :, 0:h, 0:w]
        else:
            raise Exception("Unexpected info '{}' in im_info".format(item[0]))
    return alpha

def save_alpha_pred(alpha: np.ndarray, trimap: np.ndarray = None):
    """
    The value of alpha is range [0, 1], shape should be [h,w]
    """
    if isinstance(trimap, str):
        trimap = cv2.imread(trimap, 0)
    alpha[trimap == 0] = 0
    alpha[trimap == 255] = 255
    alpha = (alpha).astype('uint8')
    return alpha


def cv2_to_base64(image: np.ndarray):
    """
    Convert data from BGR to base64 format.
    """
    data = cv2.imencode('.png', image)[1]
    return base64.b64encode(data.tostring()).decode('utf8')


def base64_to_cv2(b64str: str):
    """
    Convert data from base64 to BGR format.
    """
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data