model.py 6.0 KB
Newer Older
C
chenjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
chenjian 已提交
14
import argparse
C
chenjian 已提交
15 16 17 18 19 20 21 22
import os
import sys
from pathlib import Path

import numpy as np
import paddle
import paddle.vision.transforms as T
import ppgan.faceutils as futils
C
chenjian 已提交
23 24 25
from paddle.utils.download import get_weights_path_from_url
from PIL import Image
from ppgan.models.builder import build_model
C
chenjian 已提交
26 27
from ppgan.utils.config import get_config
from ppgan.utils.filesystem import load
C
chenjian 已提交
28
from ppgan.utils.options import parse_args
C
chenjian 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
from ppgan.utils.preprocess import *


def toImage(net_output):
    img = net_output.squeeze(0).transpose((1, 2, 0)).numpy()  # [1,c,h,w]->[h,w,c]
    img = (img * 255.0).clip(0, 255)
    img = np.uint8(img)
    img = Image.fromarray(img, mode='RGB')
    return img


PS_WEIGHT_URL = "https://paddlegan.bj.bcebos.com/models/psgan_weight.pdparams"


class PreProcess:
    def __init__(self, config, need_parser=True):
        self.img_size = 256
        self.transform = transform = T.Compose([
            T.Resize(size=256),
            T.ToTensor(),
        ])
        self.norm = T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        if need_parser:
            self.face_parser = futils.mask.FaceParser()
        self.up_ratio = 0.6 / 0.85
        self.down_ratio = 0.2 / 0.85
        self.width_ratio = 0.2 / 0.85

    def __call__(self, image):
        face = futils.dlib.detect(image)

        if not face:
            return
        face_on_image = face[0]
        image, face, crop_face = futils.dlib.crop(image, face_on_image, self.up_ratio, self.down_ratio,
                                                  self.width_ratio)
        np_image = np.array(image)
        image_trans = self.transform(np_image)
        mask = self.face_parser.parse(np.float32(cv2.resize(np_image, (512, 512))))
        mask = cv2.resize(mask.numpy(), (self.img_size, self.img_size), interpolation=cv2.INTER_NEAREST)
        mask = mask.astype(np.uint8)
        mask_tensor = paddle.to_tensor(mask)

        lms = futils.dlib.landmarks(image, face) / image_trans.shape[:2] * self.img_size
        lms = lms.round()

        P_np = generate_P_from_lmks(lms, self.img_size, self.img_size, self.img_size)

        mask_aug = generate_mask_aug(mask, lms)

        return [self.norm(image_trans).unsqueeze(0),
                np.float32(mask_aug),
                np.float32(P_np),
                np.float32(mask)], face_on_image, crop_face


class PostProcess:
    def __init__(self, config):
        self.denoise = True
        self.img_size = 256

    def __call__(self, source: Image, result: Image):
        # TODO: Refract -> name, resize
        source = np.array(source)
        result = np.array(result)

        height, width = source.shape[:2]
        small_source = cv2.resize(source, (self.img_size, self.img_size))
        laplacian_diff = source.astype(np.float) - cv2.resize(small_source, (width, height)).astype(np.float)
        result = (cv2.resize(result, (width, height)) + laplacian_diff).round().clip(0, 255).astype(np.uint8)
        if self.denoise:
            result = cv2.fastNlMeansDenoisingColored(result)
        result = Image.fromarray(result).convert('RGB')
        return result


class Inference:
    def __init__(self, config, model_path=''):
        self.model = build_model(config.model)
        self.preprocess = PreProcess(config)
        self.model_path = model_path

    def transfer(self, source, reference, with_face=False):
        source_input, face, crop_face = self.preprocess(source)
        reference_input, face, crop_face = self.preprocess(reference)

        consis_mask = np.float32(calculate_consis_mask(source_input[1], reference_input[1]))
        consis_mask = paddle.to_tensor(np.expand_dims(consis_mask, 0))

        if not (source_input and reference_input):
            if with_face:
                return None, None
            return

        for i in range(1, len(source_input) - 1):
            source_input[i] = paddle.to_tensor(np.expand_dims(source_input[i], 0))

        for i in range(1, len(reference_input) - 1):
            reference_input[i] = paddle.to_tensor(np.expand_dims(reference_input[i], 0))

        input_data = {
            'image_A': source_input[0],
            'image_B': reference_input[0],
            'mask_A_aug': source_input[1],
            'mask_B_aug': reference_input[1],
            'P_A': source_input[2],
            'P_B': reference_input[2],
            'consis_mask': consis_mask
        }

        state_dicts = load(self.model_path)
        for net_name, net in self.model.nets.items():
            net.set_state_dict(state_dicts[net_name])
        result, _ = self.model.test(input_data)
        min_, max_ = result.min(), result.max()
        result += -min_
        result = paddle.divide(result, max_ - min_ + 1e-5)
        img = toImage(result)

        if with_face:
            return img, crop_face

        return img


class PSGANPredictor:
    def __init__(self, cfg, weight_path):
        self.cfg = cfg
        self.weight_path = weight_path

    def run(self, source, reference):
        source = Image.fromarray(source)
        reference = Image.fromarray(reference)
        inference = Inference(self.cfg, self.weight_path)
        postprocess = PostProcess(self.cfg)

        # Transfer the psgan from reference to source.
        image, face = inference.transfer(source, reference, with_face=True)
        source_crop = source.crop((face.left(), face.top(), face.right(), face.bottom()))
        image = postprocess(source_crop, image)
        image = np.array(image)
        return image