task.py 22.0 KB
Newer Older
1
#  Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
Z
Zeyu Chen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
19
import os
20 21 22 23
import collections
import time
import multiprocessing

W
wuzewu 已提交
24 25
import numpy as np
import paddle.fluid as fluid
W
wuzewu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
from visualdl import LogWriter

import paddlehub as hub
from paddlehub.common.utils import mkdir
from paddlehub.common.logger import logger
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
from paddlehub.finetune.evaluate import chunk_eval, calculate_f1
from paddlehub.finetune.config import RunConfig

__all__ = [
    "ClassifierTask", "ImageClassifierTask", "TextClassifierTask",
    "SequenceLabelTask"
]


class RunState(object):
    def __init__(self, length):
        self.run_time_begin = time.time()
        self.run_step = 0
        self.run_examples = 0
        self.run_results = [0] * length
        self.run_time_used = 0
        self.run_speed = 0.0

    def __add__(self, other):
        self.run_step += other.run_step
        self.run_examples += other.run_examples
        for index in range(len(self.run_results)):
            self.run_results[index] += other.run_results[index]
        return self

    def update(self):
        self.run_time_used = time.time() - self.run_time_begin
        self.run_speed = self.run_step / self.run_time_used
        return self


class BasicTask(object):
W
wuzewu 已提交
64
    def __init__(self,
W
wuzewu 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
                 feed_list,
                 data_reader,
                 main_program=None,
                 startup_program=None,
                 config=None):
        self.data_reader = data_reader
        self.main_program = main_program if main_program else fluid.default_main_program(
        )
        self.startup_program = startup_program if startup_program else fluid.default_startup_program(
        )
        self.config = config if config else RunConfig()
        self.place, self.device_count = hub.common.get_running_device_info(
            self.config)
        self.exe = fluid.Executor(place=self.place)
        self.feed_list = feed_list
        self.metrics = []
        self.is_inititalized = False
        self.current_step = 0
        self.current_epoch = 0

    def _init_start_event(self):
        pass

    def _init_end_event(self):
        pass

    def _eval_start_event(self, phase):
        logger.info("Evaluation on {} dataset start".format(phase))

    def _eval_end_event(self, phase, run_state):
        logger.info("[%s dataset evaluation result] [step/sec: %.2f]" %
                    (phase, run_state.run_speed))

    def _log_interval_event(self, run_state):
        logger.info("step %d: [step/sec: %.2f]" % (self.current_step,
                                                   run_state.run_speed))

    def _save_ckpt_interval_event(self):
        self.save_checkpoint(self.current_epoch, self.current_step)

    def _eval_interval_event(self):
        self.eval(phase="dev")

    def _run_step_event(self, phase, run_state):
        if phase == "predict":
            yield run_state.run_results

    def _finetune_start_event(self):
        logger.info("PaddleHub finetune start")

    def _finetune_end_event(self, run_state):
        logger.info("PaddleHub finetune finished.")

    def _build_net(self):
        raise NotImplementedError

    def _add_loss(self):
        raise NotImplementedError

    def _add_label(self):
        raise NotImplementedError

    def _add_metrics(self):
        raise NotImplementedError

    def _init_if_necessary(self, load_best_model=False):
        if not self.is_inititalized:
            self._init_start_event()
            with fluid.program_guard(self.main_program):
                self.output = self._build_net()
                self.inference_program = self.main_program.clone(for_test=True)
                self._add_label()
                self._add_loss()
                self._add_metrics()
                self.test_program = self.main_program.clone(for_test=True)
                self.config.strategy.execute(self.loss, self.data_reader,
                                             self.config)

            self.loss.persistable = True
            for metrics in self.metrics:
                metrics.persistable = True
            self.output.persistable = True

            self.build_strategy = fluid.BuildStrategy()
            if self.config.enable_memory_optim:
                self.build_strategy.memory_optimize = True
            else:
                self.build_strategy.memory_optimize = False

            self.main_program_compiled = fluid.CompiledProgram(
                self.main_program).with_data_parallel(
                    loss_name=self.loss.name,
                    build_strategy=self.build_strategy)
            self.inference_program_compiled = fluid.CompiledProgram(
                self.inference_program).with_data_parallel(
                    share_vars_from=self.main_program_compiled,
                    build_strategy=self.build_strategy)
            self.test_program_compiled = fluid.CompiledProgram(
                self.test_program).with_data_parallel(
                    share_vars_from=self.main_program_compiled,
                    build_strategy=self.build_strategy)

            self.load_checkpoint(load_best_model=load_best_model)

            if not os.path.exists(self.config.checkpoint_dir):
                mkdir(self.config.checkpoint_dir)
            vdl_log_dir = os.path.join(self.config.checkpoint_dir, "vdllog")
            self.log_writer = LogWriter(vdl_log_dir, sync_cycle=1)
            self.is_inititalized = True
            self._init_end_event()

    # NOTE: current saved checkpoint machanism is not completed,
    # it can't restore dataset training status
    def save_checkpoint(self, epoch, step):
        save_checkpoint(
            checkpoint_dir=self.config.checkpoint_dir,
            current_epoch=self.current_epoch,
            global_step=self.current_step,
            exe=self.exe,
            main_program=self.main_program)

    def load_checkpoint(self, load_best_model=False):
        self.current_epoch, self.current_step = load_checkpoint(
            self.config.checkpoint_dir,
            self.exe,
            main_program=self.main_program)

        if load_best_model:
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            if os.path.exists(model_saved_dir):
                fluid.io.load_persistables(
                    executor=self.exe,
                    dirname=model_saved_dir,
                    main_program=self.main_program)

    def get_feed_list(self, phase):
        if phase in ["train", "dev", "val", "test"]:
            return self.feed_list + [self.label.name]
        return self.feed_list

    def get_fetch_list(self, phase):
        metrics_name = [metric.name for metric in self.metrics]
        if phase in ["train", "dev", "val", "test"]:
            return metrics_name + [self.loss.name]
        return [self.output.name]

    def finetune_and_eval(self):
        self.finetune(do_eval=True)

    def finetune(self, do_eval=False):
        self._init_if_necessary()
        self._finetune_start_event()
        run_states = []
        if self.current_epoch <= self.config.num_epoch:
            # Start to finetune
            with fluid.program_guard(self.main_program):
                while self.current_epoch <= self.config.num_epoch:
                    train_reader = self.data_reader.data_generator(
                        batch_size=self.config.batch_size, phase='train')
                    run_states = self._run(
                        train_reader,
                        phase="train",
                        do_eval=do_eval,
                        program_compiled=self.main_program_compiled)
                    self.current_epoch += 1

            # Save checkpoint after finetune
            self.save_checkpoint(self.current_epoch + 1, self.current_step)

            # Final evaluation
            self.eval(phase="dev")
            self.eval(phase="test")

        self._finetune_end_event(run_states)

    def eval(self, phase="dev"):
        self._init_if_necessary()
        self._eval_start_event(phase)
        with fluid.program_guard(self.test_program):
            test_reader = self.data_reader.data_generator(
                batch_size=self.config.batch_size, phase=phase)
            run_states = self._run(
                test_reader, phase=phase, program_compiled=self.test_program)

        self._eval_end_event(phase, run_states)

    def _run(self, reader, phase, do_eval=False, program_compiled=None):
        if program_compiled is None:
            program_compiled = self.main_program_compiled
        feed_list = self.get_feed_list(phase=phase)
        data_feeder = fluid.DataFeeder(feed_list=feed_list, place=self.place)
        fetch_list = self.get_fetch_list(phase=phase)
        global_run_states = []
        period_run_states = []

        for run_step, batch in enumerate(reader(), start=1):
            step_run_state = RunState(len(fetch_list))
            step_run_state.run_step = 1
            num_batch_examples = len(batch)

            fetch_result = self.exe.run(
                program_compiled,
                feed=data_feeder.feed(batch),
                fetch_list=fetch_list)

            for index, result in enumerate(fetch_result):
                step_run_state.run_results[index] = result
            step_run_state.run_examples += num_batch_examples
            step_run_state.update()
            period_run_states += [step_run_state]
            if phase == "train":
                self.current_step += 1
                if self.current_step % self.config.log_interval == 0:
                    self._log_interval_event(period_run_states)
                    global_run_states += period_run_states
                    period_run_states = []

                if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                    self._save_ckpt_interval_event()

                if do_eval and self.current_step % self.config.eval_interval == 0:
                    self._eval_interval_event()

            self._run_step_event(phase, step_run_state)

        global_run_states += period_run_states
        return global_run_states

    def predict(self, data, load_best_model=True):
        self._init_if_necessary(load_best_model=load_best_model)
        with fluid.program_guard(self.inference_program):
            inference_reader = self.data_reader.data_generator(
                batch_size=self.config.batch_size, phase='predict', data=data)
            for run_state in self._run(
                    inference_reader,
                    phase='predict',
                    program_compiled=self.inference_program):
                yield run_state.run_results


class ClassifierTask(BasicTask):
    def __init__(self,
                 data_reader,
                 feature,
                 num_classes,
                 feed_list,
                 startup_program=None,
                 config=None,
                 hidden_units=None):

        main_program = feature.block.program

        super(ClassifierTask, self).__init__(
            data_reader=data_reader,
            main_program=main_program,
            feed_list=feed_list,
            startup_program=startup_program,
            config=config)

        self.feature = feature
        self.num_classes = num_classes
        self.hidden_units = hidden_units
        self.best_accuracy = -1

    def _build_net(self):
        cls_feats = self.feature
        if self.hidden_units is not None:
            for n_hidden in self.hidden_units:
                cls_feats = fluid.layers.fc(
                    input=cls_feats, size=n_hidden, act="relu")
W
wuzewu 已提交
336 337 338

        logits = fluid.layers.fc(
            input=cls_feats,
W
wuzewu 已提交
339
            size=self.num_classes,
W
wuzewu 已提交
340 341 342 343 344 345 346
            param_attr=fluid.ParamAttr(
                name="cls_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_out_b", initializer=fluid.initializer.Constant(0.)),
            act="softmax")

W
wuzewu 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        return logits

    def _add_label(self):
        self.label = fluid.layers.data(name="label", dtype="int64", shape=[1])

    def _add_loss(self):
        ce_loss = fluid.layers.cross_entropy(
            input=self.output, label=self.label)
        self.loss = fluid.layers.mean(x=ce_loss)

    def _add_metrics(self):
        self.accuracy = fluid.layers.accuracy(
            input=self.output, label=self.label)
        self.metrics.append(self.accuracy)

    def _init_end_event(self):
        with self.log_writer.mode("train") as logw:
            self.train_loss_scalar = logw.scalar(tag="Loss [train]")
            self.train_acc_scalar = logw.scalar(tag="Accuracy [train]")
        with self.log_writer.mode("evaluate") as logw:
            self.eval_loss_scalar = logw.scalar(tag="Loss [eval]")
            self.eval_acc_scalar = logw.scalar(tag="Accuracy [eval]")

    def _calculate_metrics(self, run_states):
        loss_sum = acc_sum = run_examples = 0
        run_step = run_time_used = 0
        for run_state in run_states:
            run_examples += run_state.run_examples
            run_step += run_state.run_step
            loss_sum += np.mean(
                run_state.run_results[-1]) * run_state.run_examples
            acc_sum += np.mean(
                run_state.run_results[0]) * run_state.run_examples

        run_time_used = time.time() - run_states[0].run_time_begin
        avg_loss = loss_sum / run_examples
        avg_acc = acc_sum / run_examples
        run_speed = run_step / run_time_used

        return avg_loss, avg_acc, run_speed

    def _log_interval_event(self, run_states):
        avg_loss, avg_acc, run_speed = self._calculate_metrics(run_states)
        self.train_loss_scalar.add_record(self.current_step, avg_loss)
        self.train_acc_scalar.add_record(self.current_step, avg_acc)
        logger.info("step %d: loss=%.5f acc=%.5f [step/sec: %.2f]" %
                    (self.current_step, avg_loss, avg_acc, run_speed))

    def _eval_end_event(self, phase, run_states):
        eval_loss, eval_acc, run_speed = self._calculate_metrics(run_states)
        logger.info(
            "[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]"
            % (phase, eval_loss, eval_acc, run_speed))
        if phase in ["dev", "val"] and eval_acc > self.best_accuracy:
            self.eval_loss_scalar.add_record(self.current_step, eval_loss)
            self.eval_acc_scalar.add_record(self.current_step, eval_acc)
            self.best_accuracy = eval_acc
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("best model saved to %s [best accuracy=%.5f]" %
                        (model_saved_dir, self.best_accuracy))
            save_result = fluid.io.save_persistables(
                executor=self.exe,
                dirname=model_saved_dir,
                main_program=self.main_program)


ImageClassifierTask = ClassifierTask


class TextClassifierTask(ClassifierTask):
    def __init__(self,
                 data_reader,
                 feature,
                 num_classes,
                 feed_list,
                 startup_program=None,
                 config=None,
                 hidden_units=None):

        main_program = feature.block.program

        super(TextClassifierTask, self).__init__(
            data_reader=data_reader,
            feature=feature,
            num_classes=num_classes,
            feed_list=feed_list,
            startup_program=startup_program,
            config=config,
            hidden_units=hidden_units)

    def _build_net(self):
        cls_feats = fluid.layers.dropout(
            x=self.feature,
            dropout_prob=0.1,
            dropout_implementation="upscale_in_train")

        if self.hidden_units is not None:
            for n_hidden in self.hidden_units:
                cls_feats = fluid.layers.fc(
                    input=cls_feats, size=n_hidden, act="relu")

        logits = fluid.layers.fc(
W
wuzewu 已提交
450
            input=cls_feats,
W
wuzewu 已提交
451
            size=self.num_classes,
W
wuzewu 已提交
452 453 454 455 456 457 458
            param_attr=fluid.ParamAttr(
                name="cls_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_out_b", initializer=fluid.initializer.Constant(0.)),
            act="softmax")

W
wuzewu 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        return logits


class SequenceLabelTask(BasicTask):
    def __init__(
            self,
            feature,
            max_seq_len,
            num_classes,
            data_reader,
            feed_list,
            startup_program=None,
            config=None,
    ):

        main_program = feature.block.program

        super(SequenceLabelTask, self).__init__(
            data_reader=data_reader,
            main_program=main_program,
            feed_list=feed_list,
            startup_program=startup_program,
            config=config)

        self.feature = feature
        self.max_seq_len = max_seq_len
        self.num_classes = num_classes
        self.best_f1 = -1

    def _build_net(self):
        self.logits = fluid.layers.fc(
            input=self.feature,
            size=self.num_classes,
W
wuzewu 已提交
492 493 494 495 496 497 498 499
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(
                name="cls_seq_label_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_seq_label_out_b",
                initializer=fluid.initializer.Constant(0.)))

W
wuzewu 已提交
500
        logits = self.logits
W
wuzewu 已提交
501 502
        logits = fluid.layers.flatten(logits, axis=2)
        logits = fluid.layers.softmax(logits)
W
wuzewu 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        self.num_labels = logits.shape[1]
        return logits

    def _add_label(self):
        self.label = fluid.layers.data(
            name="label", shape=[self.max_seq_len, 1], dtype='int64')

    def _add_loss(self):
        labels = fluid.layers.flatten(self.label, axis=2)
        ce_loss = fluid.layers.cross_entropy(input=self.output, label=labels)
        self.loss = fluid.layers.mean(x=ce_loss)

    def _add_metrics(self):
        self.ret_labels = fluid.layers.reshape(x=self.label, shape=[-1, 1])
        self.ret_infers = fluid.layers.reshape(
            x=fluid.layers.argmax(self.logits, axis=2), shape=[-1, 1])
        self.seq_len = fluid.layers.data(
            name="seq_len", shape=[1], dtype='int64')
        self.seq_len = fluid.layers.assign(self.seq_len)
        self.metrics += [self.ret_labels, self.ret_infers, self.seq_len]

    def _init_end_event(self):
        with self.log_writer.mode("train") as logw:
            self.train_loss_scalar = logw.scalar(tag="Loss [train]")
        with self.log_writer.mode("evaluate") as logw:
            self.eval_f1_scalar = logw.scalar(tag="F1 [eval]")
            self.eval_precision_scalar = logw.scalar(tag="Precision [eval]")
            self.eval_recall_scalar = logw.scalar(tag="Recall [eval]")

    def _calculate_metrics(self, run_states):
        total_infer = total_label = total_correct = loss_sum = 0
        run_step = run_time_used = run_examples = 0
        for run_state in run_states:
            loss_sum += np.mean(run_state.run_results[-1])
            np_labels = run_state.run_results[0]
            np_infers = run_state.run_results[1]
            np_lens = run_state.run_results[2]
            label_num, infer_num, correct_num = chunk_eval(
                np_labels, np_infers, np_lens, self.num_labels,
                self.device_count)
            total_infer += infer_num
            total_label += label_num
            total_correct += correct_num
            run_examples += run_state.run_examples
            run_step += run_state.run_step

        run_time_used = time.time() - run_states[0].run_time_begin
        run_speed = run_step / run_time_used
        avg_loss = loss_sum / run_examples
        precision, recall, f1 = calculate_f1(total_label, total_infer,
                                             total_correct)
        return precision, recall, f1, avg_loss, run_speed

    def _log_interval_event(self, run_states):
        precision, recall, f1, avg_loss, run_speed = self._calculate_metrics(
            run_states)
        self.train_loss_scalar.add_record(self.current_step, avg_loss)
        logger.info("step %d: loss=%.5f [step/sec: %.2f]" %
                    (self.current_step, avg_loss, run_speed))

    def _eval_end_event(self, phase, run_states):
        precision, recall, f1, avg_loss, run_speed = self._calculate_metrics(
            run_states)
        self.eval_f1_scalar.add_record(self.current_step, f1)
        self.eval_precision_scalar.add_record(self.current_step, precision)
        self.eval_recall_scalar.add_record(self.current_step, recall)
        logger.info("[%s dataset evaluation result] [step/sec: %.2f]" %
                    (phase, run_speed))
        logger.info(
            "[%s evaluation] F1-Score=%f, precision=%f, recall=%f [step/sec: %.2f]"
            % (phase, f1, precision, recall, run_speed))
        if f1 > self.best_f1:
            self.best_f1 = f1
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("best model saved to %s [best F1=%.5f]" %
                        (model_saved_dir, self.best_f1))
            fluid.io.save_persistables(self.exe, dirname=model_saved_dir)

    def get_feed_list(self, phase):
        if phase in ["train", "dev", "val", "test"]:
            return self.feed_list + [self.label.name] + [self.seq_len.name]
        return self.feed_list