decode.py 10.5 KB
Newer Older
K
kinghuin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

from collections import namedtuple

import paddle.fluid as F
import paddle.fluid.layers as L
import paddle.fluid.dygraph as D
import numpy as np
from paddlehub.common.logger import logger


def gen_bias(encoder_inputs, decoder_inputs, step):
    decoder_bsz, decoder_seqlen = decoder_inputs.shape[:2]
    attn_bias = L.reshape(
        L.range(0, decoder_seqlen, 1, dtype='float32') + 1, [1, -1, 1])
    decoder_bias = L.cast(
        (L.matmul(attn_bias, 1. / attn_bias, transpose_y=True) >= 1.),
        'float32')  # [1, 1, decoderlen, decoderlen]
    encoder_bias = L.unsqueeze(
        L.cast(L.ones_like(encoder_inputs), 'float32'),
        [1])  # [bsz, 1, encoderlen]
    encoder_bias = L.expand(
        encoder_bias, [1, decoder_seqlen, 1])  # [bsz,decoderlen, encoderlen]
    decoder_bias = L.expand(
        decoder_bias, [decoder_bsz, 1, 1])  # [bsz, decoderlen, decoderlen]
    if step > 0:
        bias = L.concat([
            encoder_bias,
            L.ones([decoder_bsz, decoder_seqlen, step], 'float32'), decoder_bias
        ], -1)
    else:
        bias = L.concat([encoder_bias, decoder_bias], -1)
    return bias


@D.no_grad
def greedy_search_infilling(model,
                            q_ids,
                            q_sids,
                            sos_id,
                            eos_id,
                            attn_id,
                            max_encode_len=640,
                            max_decode_len=100,
                            tgt_type_id=3):
    model.eval()
    _, logits, info = model(q_ids, q_sids)
    gen_ids = L.argmax(logits, -1)
    d_batch, d_seqlen = q_ids.shape
    seqlen = L.reduce_sum(L.cast(q_ids != 0, 'int64'), 1, keep_dim=True)
    logger.debug(seqlen.numpy())
    logger.debug(d_seqlen)
    has_stopped = np.zeros([d_batch], dtype=np.bool)
    gen_seq_len = np.zeros([d_batch], dtype=np.int64)
    output_ids = []

    past_cache = info['caches']

    cls_ids = L.ones([d_batch], dtype='int64') * sos_id
    attn_ids = L.ones([d_batch], dtype='int64') * attn_id
    ids = L.stack([cls_ids, attn_ids], -1)
    for step in range(max_decode_len):
        logger.debug('decode step %d' % step)
        bias = gen_bias(q_ids, ids, step)
        pos_ids = D.to_variable(
            np.tile(np.array([[step, step + 1]], dtype=np.int64), [d_batch, 1]))
        pos_ids += seqlen
        _, logits, info = model(
            ids,
            L.ones_like(ids) * tgt_type_id,
            pos_ids=pos_ids,
            attn_bias=bias,
            past_cache=past_cache)
        gen_ids = L.argmax(logits, -1)

        past_cached_k, past_cached_v = past_cache
        cached_k, cached_v = info['caches']
        cached_k = [
            L.concat([pk, k[:, :1, :]], 1)
            for pk, k in zip(past_cached_k, cached_k)
        ]  # concat cached
        cached_v = [
            L.concat([pv, v[:, :1, :]], 1)
            for pv, v in zip(past_cached_v, cached_v)
        ]
        past_cache = (cached_k, cached_v)

        gen_ids = gen_ids[:, 1]
        ids = L.stack([gen_ids, attn_ids], 1)

        gen_ids = gen_ids.numpy()
        has_stopped |= (gen_ids == eos_id).astype(np.bool)
        gen_seq_len += (1 - has_stopped.astype(np.int64))
        output_ids.append(gen_ids.tolist())
        if has_stopped.all():
            break
    output_ids = np.array(output_ids).transpose([1, 0])
    return output_ids


BeamSearchState = namedtuple('BeamSearchState',
                             ['log_probs', 'lengths', 'finished'])
BeamSearchOutput = namedtuple('BeamSearchOutput',
                              ['scores', 'predicted_ids', 'beam_parent_ids'])


def log_softmax(x):
    e_x = np.exp(x - np.max(x))
    return np.log(e_x / e_x.sum())


def mask_prob(p, onehot_eos, finished):
    is_finished = L.cast(L.reshape(finished, [-1, 1]) != 0, 'float32')
    p = is_finished * (1. - L.cast(onehot_eos, 'float32')) * -9999. + (
        1. - is_finished) * p
    return p


def hyp_score(log_probs, length, length_penalty):
    lp = L.pow((5. + L.cast(length, 'float32')) / 6., length_penalty)
    return log_probs / lp


def beam_search_step(state, logits, eos_id, beam_width, is_first_step,
                     length_penalty):
    """logits.shape == [B*W, V]"""
    _, vocab_size = logits.shape

    bsz, beam_width = state.log_probs.shape
    onehot_eos = L.cast(
        F.one_hot(L.ones([1], 'int64') * eos_id, vocab_size), 'int64')  # [1, V]

    probs = L.log(L.softmax(logits))  # [B*W, V]
    probs = mask_prob(probs, onehot_eos, state.finished)  # [B*W, V]
    allprobs = L.reshape(state.log_probs, [-1, 1]) + probs  # [B*W, V]

    not_finished = 1 - L.reshape(state.finished, [-1, 1])  # [B*W,1]
    not_eos = 1 - onehot_eos
    length_to_add = not_finished * not_eos  # [B*W,V]
    alllen = L.reshape(state.lengths, [-1, 1]) + length_to_add

    allprobs = L.reshape(allprobs, [-1, beam_width * vocab_size])
    alllen = L.reshape(alllen, [-1, beam_width * vocab_size])
    allscore = hyp_score(allprobs, alllen, length_penalty)
    if is_first_step:
        allscore = L.reshape(
            allscore,
            [bsz, beam_width, -1])[:, 0, :]  # first step only consiter beam 0
    scores, idx = L.topk(allscore, k=beam_width)  # [B, W]
    next_beam_id = idx // vocab_size  # [B, W]
    next_word_id = idx % vocab_size

    gather_idx = L.concat([L.where(idx != -1)[:, :1],
                           L.reshape(idx, [-1, 1])], 1)
    next_probs = L.reshape(L.gather_nd(allprobs, gather_idx), idx.shape)
    next_len = L.reshape(L.gather_nd(alllen, gather_idx), idx.shape)

    gather_idx = L.concat(
        [L.where(next_beam_id != -1)[:, :1],
         L.reshape(next_beam_id, [-1, 1])], 1)
    next_finished = L.reshape(
        L.gather_nd(state.finished, gather_idx), state.finished.shape
    )  # [gather new beam state according to new beam id]

    next_finished += L.cast(next_word_id == eos_id, 'int64')
    next_finished = L.cast(next_finished > 0, 'int64')

    next_state = BeamSearchState(
        log_probs=next_probs, lengths=next_len, finished=next_finished)
    output = BeamSearchOutput(
        scores=scores, predicted_ids=next_word_id, beam_parent_ids=next_beam_id)

    return output, next_state


@D.no_grad
def beam_search_infilling(model,
                          q_ids,
                          q_sids,
                          sos_id,
                          eos_id,
                          attn_id,
                          max_encode_len=640,
                          max_decode_len=100,
                          beam_width=5,
                          tgt_type_id=3,
                          length_penalty=1.0):
    model.eval()
    _, __, info = model(q_ids, q_sids)
    d_batch, d_seqlen = q_ids.shape

    state = BeamSearchState(
        log_probs=L.zeros([d_batch, beam_width], 'float32'),
        lengths=L.zeros([d_batch, beam_width], 'int64'),
        finished=L.zeros([d_batch, beam_width], 'int64'))
    outputs = []

    def reorder_(t, parent_id):
        """reorder cache according to parent beam id"""
        gather_idx = L.where(parent_id != -1)[:, 0] * beam_width + L.reshape(
            parent_id, [-1])
        t = L.gather(t, gather_idx)
        return t

    def tile_(t, times):
        _shapes = list(t.shape[1:])
        ret = L.reshape(
            L.expand(L.unsqueeze(t, [1]), [
                1,
                times,
            ] + [
                1,
            ] * len(_shapes)), [
                -1,
            ] + _shapes)
        return ret

    cached_k, cached_v = info['caches']
    cached_k = [tile_(k, beam_width) for k in cached_k]
    cached_v = [tile_(v, beam_width) for v in cached_v]
    past_cache = (cached_k, cached_v)

    q_ids = tile_(q_ids, beam_width)
    seqlen = L.reduce_sum(L.cast(q_ids != 0, 'int64'), 1, keep_dim=True)

    cls_ids = L.ones([d_batch * beam_width], dtype='int64') * sos_id
    attn_ids = L.ones([d_batch * beam_width], dtype='int64') * attn_id  # SOS
    ids = L.stack([cls_ids, attn_ids], -1)
    for step in range(max_decode_len):
        bias = gen_bias(q_ids, ids, step)
        pos_ids = D.to_variable(
            np.tile(
                np.array([[step, step + 1]], dtype=np.int64),
                [d_batch * beam_width, 1]))
        pos_ids += seqlen
        _, logits, info = model(
            ids,
            L.ones_like(ids) * tgt_type_id,
            pos_ids=pos_ids,
            attn_bias=bias,
            past_cache=past_cache)

        output, state = beam_search_step(
            state,
            logits[:, 1],
            eos_id=eos_id,
            beam_width=beam_width,
            is_first_step=(step == 0),
            length_penalty=length_penalty)
        outputs.append(output)

        past_cached_k, past_cached_v = past_cache
        cached_k, cached_v = info['caches']
        cached_k = [
            reorder_(L.concat([pk, k[:, :1, :]], 1), output.beam_parent_ids)
            for pk, k in zip(past_cached_k, cached_k)
        ]  # concat cached
        cached_v = [
            reorder_(L.concat([pv, v[:, :1, :]], 1), output.beam_parent_ids)
            for pv, v in zip(past_cached_v, cached_v)
        ]
        past_cache = (cached_k, cached_v)

        pred_ids_flatten = L.reshape(output.predicted_ids,
                                     [d_batch * beam_width])
        ids = L.stack([pred_ids_flatten, attn_ids], 1)

        if state.finished.numpy().all():
            break

    final_ids = L.stack([o.predicted_ids for o in outputs], 0)
    final_parent_ids = L.stack([o.beam_parent_ids for o in outputs], 0)
    final_ids = L.gather_tree(final_ids, final_parent_ids)[:, :,
                                                           0]  # pick best beam
    final_ids = L.transpose(L.reshape(final_ids, [-1, d_batch * 1]), [1, 0])
    return final_ids


en_patten = re.compile(r'^[a-zA-Z0-9]*$')


def post_process(token):
    if token.startswith('##'):
        ret = token[2:]
    else:
        if en_patten.match(token):
            ret = ' ' + token
        else:
            ret = token
    return ret