import librosa import librosa.filters import numpy as np from scipy import signal from scipy.io import wavfile from .audio_config import get_audio_config audio_config = get_audio_config() def load_wav(path, sr): return librosa.core.load(path, sr=sr)[0] def save_wav(wav, path, sr): wav *= 32767 / max(0.01, np.max(np.abs(wav))) #proposed by @dsmiller wavfile.write(path, sr, wav.astype(np.int16)) def save_wavenet_wav(wav, path, sr): librosa.output.write_wav(path, wav, sr=sr) def preemphasis(wav, k, preemphasize=True): if preemphasize: return signal.lfilter([1, -k], [1], wav) return wav def inv_preemphasis(wav, k, inv_preemphasize=True): if inv_preemphasize: return signal.lfilter([1], [1, -k], wav) return wav def get_hop_size(): hop_size = audio_config.hop_size if hop_size is None: assert audio_config.frame_shift_ms is not None hop_size = int(audio_config.frame_shift_ms / 1000 * audio_config.sample_rate) return hop_size def linearspectrogram(wav): D = _stft( preemphasis(wav, audio_config.preemphasis, audio_config.preemphasize)) S = _amp_to_db(np.abs(D)) - audio_config.ref_level_db if audio_config.signal_normalization: return _normalize(S) return S def melspectrogram(wav): D = _stft( preemphasis(wav, audio_config.preemphasis, audio_config.preemphasize)) S = _amp_to_db(_linear_to_mel(np.abs(D))) - audio_config.ref_level_db if audio_config.signal_normalization: return _normalize(S) return S def _lws_processor(): import lws return lws.lws(audio_config.n_fft, get_hop_size(), fftsize=audio_config.win_size, mode="speech") def _stft(y): if audio_config.use_lws: return _lws_processor(audio_config).stft(y).T else: return librosa.stft(y=y, n_fft=audio_config.n_fft, hop_length=get_hop_size(), win_length=audio_config.win_size) ########################################################## #Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) def num_frames(length, fsize, fshift): """Compute number of time frames of spectrogram """ pad = (fsize - fshift) if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M def pad_lr(x, fsize, fshift): """Compute left and right padding """ M = num_frames(len(x), fsize, fshift) pad = (fsize - fshift) T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r ########################################################## #Librosa correct padding def librosa_pad_lr(x, fsize, fshift): return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] # Conversions _mel_basis = None def _linear_to_mel(spectogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectogram) def _build_mel_basis(): assert audio_config.fmax <= audio_config.sample_rate // 2 return librosa.filters.mel(audio_config.sample_rate, audio_config.n_fft, n_mels=audio_config.num_mels, fmin=audio_config.fmin, fmax=audio_config.fmax) def _amp_to_db(x): min_level = np.exp(audio_config.min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _db_to_amp(x): return np.power(10.0, (x) * 0.05) def _normalize(S): if audio_config.allow_clipping_in_normalization: if audio_config.symmetric_mels: return np.clip( (2 * audio_config.max_abs_value) * ((S - audio_config.min_level_db) / (-audio_config.min_level_db)) - audio_config.max_abs_value, -audio_config.max_abs_value, audio_config.max_abs_value) else: return np.clip( audio_config.max_abs_value * ((S - audio_config.min_level_db) / (-audio_config.min_level_db)), 0, audio_config.max_abs_value) assert S.max() <= 0 and S.min() - audio_config.min_level_db >= 0 if audio_config.symmetric_mels: return (2 * audio_config.max_abs_value) * ( (S - audio_config.min_level_db) / (-audio_config.min_level_db)) - audio_config.max_abs_value else: return audio_config.max_abs_value * ((S - audio_config.min_level_db) / (-audio_config.min_level_db)) def _denormalize(D): if audio_config.allow_clipping_in_normalization: if audio_config.symmetric_mels: return (((np.clip(D, -audio_config.max_abs_value, audio_config.max_abs_value) + audio_config.max_abs_value) * -audio_config.min_level_db / (2 * audio_config.max_abs_value)) + audio_config.min_level_db) else: return ((np.clip(D, 0, audio_config.max_abs_value) * -audio_config.min_level_db / audio_config.max_abs_value) + audio_config.min_level_db) if audio_config.symmetric_mels: return (((D + audio_config.max_abs_value) * -audio_config.min_level_db / (2 * audio_config.max_abs_value)) + audio_config.min_level_db) else: return ((D * -audio_config.min_level_db / audio_config.max_abs_value) + audio_config.min_level_db)