# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import random import paddle import paddle.nn as nn import paddle.nn.functional as F from .builder import GENERATORS from ...modules.equalized import EqualLinear from ...modules.fused_act import FusedLeakyReLU from ...modules.upfirdn2d import Upfirdn2dUpsample, Upfirdn2dBlur class PixelNorm(nn.Layer): def __init__(self): super().__init__() def forward(self, input): return input * paddle.rsqrt(paddle.mean(input ** 2, 1, keepdim=True) + 1e-8) class ModulatedConv2D(nn.Layer): def __init__( self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1], ): super().__init__() self.eps = 1e-8 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = (len(blur_kernel) - factor) - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Upfirdn2dBlur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Upfirdn2dBlur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = self.create_parameter( (1, out_channel, in_channel, kernel_size, kernel_size), default_initializer=nn.initializer.Normal() ) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, " f"upsample={self.upsample}, downsample={self.downsample})" ) def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).reshape((batch, 1, in_channel, 1, 1)) weight = self.scale * self.weight * style if self.demodulate: demod = paddle.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) weight = weight * demod.reshape((batch, self.out_channel, 1, 1, 1)) weight = weight.reshape(( batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size )) if self.upsample: input = input.reshape((1, batch * in_channel, height, width)) weight = weight.reshape(( batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size )) weight = weight.transpose((0, 2, 1, 3, 4)).reshape(( batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size )) out = F.conv2d_transpose(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.reshape((batch, self.out_channel, height, width)) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.reshape((1, batch * in_channel, height, width)) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.reshape((batch, self.out_channel, height, width)) else: input = input.reshape((1, batch * in_channel, height, width)) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.reshape((batch, self.out_channel, height, width)) return out class NoiseInjection(nn.Layer): def __init__(self): super().__init__() self.weight = self.create_parameter((1,), default_initializer=nn.initializer.Constant(0.0)) def forward(self, image, noise=None): if noise is None: batch, _, height, width = image.shape noise = paddle.randn((batch, 1, height, width)) return image + self.weight * noise class ConstantInput(nn.Layer): def __init__(self, channel, size=4): super().__init__() self.input = self.create_parameter((1, channel, size, size), default_initializer=nn.initializer.Normal()) def forward(self, input): batch = input.shape[0] out = self.input.tile((batch, 1, 1, 1)) return out class StyledConv(nn.Layer): def __init__( self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True, ): super().__init__() self.conv = ModulatedConv2D( in_channel, out_channel, kernel_size, style_dim, upsample=upsample, blur_kernel=blur_kernel, demodulate=demodulate, ) self.noise = NoiseInjection() self.activate = FusedLeakyReLU(out_channel) def forward(self, input, style, noise=None): out = self.conv(input, style) out = self.noise(out, noise=noise) out = self.activate(out) return out class ToRGB(nn.Layer): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.upsample = Upfirdn2dUpsample(blur_kernel) self.conv = ModulatedConv2D(in_channel, 3, 1, style_dim, demodulate=False) self.bias = self.create_parameter((1, 3, 1, 1), nn.initializer.Constant(0.0)) def forward(self, input, style, skip=None): out = self.conv(input, style) out = out + self.bias if skip is not None: skip = self.upsample(skip) out = out + skip return out @GENERATORS.register() class StyleGANv2Generator(nn.Layer): def __init__( self, size, style_dim, n_mlp, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, ): super().__init__() self.size = size self.style_dim = style_dim layers = [PixelNorm()] for i in range(n_mlp): layers.append( EqualLinear( style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" ) ) self.style = nn.Sequential(*layers) self.channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv( self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel ) self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) self.log_size = int(math.log(size, 2)) self.num_layers = (self.log_size - 2) * 2 + 1 self.convs = nn.LayerList() self.upsamples = nn.LayerList() self.to_rgbs = nn.LayerList() self.noises = nn.Layer() in_channel = self.channels[4] for layer_idx in range(self.num_layers): res = (layer_idx + 5) // 2 shape = [1, 1, 2 ** res, 2 ** res] self.noises.register_buffer(f"noise_{layer_idx}", paddle.randn(shape)) for i in range(3, self.log_size + 1): out_channel = self.channels[2 ** i] self.convs.append( StyledConv( in_channel, out_channel, 3, style_dim, upsample=True, blur_kernel=blur_kernel, ) ) self.convs.append( StyledConv( out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel ) ) self.to_rgbs.append(ToRGB(out_channel, style_dim)) in_channel = out_channel self.n_latent = self.log_size * 2 - 2 def make_noise(self): noises = [paddle.randn((1, 1, 2 ** 2, 2 ** 2))] for i in range(3, self.log_size + 1): for _ in range(2): noises.append(paddle.randn((1, 1, 2 ** i, 2 ** i))) return noises def mean_latent(self, n_latent): latent_in = paddle.randn(( n_latent, self.style_dim )) latent = self.style(latent_in).mean(0, keepdim=True) return latent def get_latent(self, input): return self.style(input) def forward( self, styles, return_latents=False, inject_index=None, truncation=1, truncation_latent=None, input_is_latent=False, noise=None, randomize_noise=True, ): if not input_is_latent: styles = [self.style(s) for s in styles] if noise is None: if randomize_noise: noise = [None] * self.num_layers else: noise = [ getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) ] if truncation < 1: style_t = [] for style in styles: style_t.append( truncation_latent + truncation * (style - truncation_latent) ) styles = style_t if len(styles) < 2: inject_index = self.n_latent if styles[0].ndim < 3: latent = styles[0].unsqueeze(1).tile((1, inject_index, 1)) else: latent = styles[0] else: if inject_index is None: inject_index = random.randint(1, self.n_latent - 1) latent = styles[0].unsqueeze(1).tile((1, inject_index, 1)) latent2 = styles[1].unsqueeze(1).tile((1, self.n_latent - inject_index, 1)) latent = paddle.concat([latent, latent2], 1) out = self.input(latent) out = self.conv1(out, latent[:, 0], noise=noise[0]) skip = self.to_rgb1(out, latent[:, 1]) i = 1 for conv1, conv2, noise1, noise2, to_rgb in zip( self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs ): out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) i += 2 image = skip if return_latents: return image, latent else: return image, None