import paddle.nn as nn from .builder import DISCRIMINATORS @DISCRIMINATORS.register() class VGGDiscriminator128(nn.Layer): """VGG style discriminator with input size 128 x 128. It is used to train SRGAN and ESRGAN. Args: num_in_ch (int): Channel number of inputs. Default: 3. num_feat (int): Channel number of base intermediate features. Default: 64. """ def __init__(self, in_channels, num_feat, norm_layer='batch'): super(VGGDiscriminator128, self).__init__() self.conv0_0 = nn.Conv2D(in_channels, num_feat, 3, 1, 1, bias_attr=True) self.conv0_1 = nn.Conv2D(num_feat, num_feat, 4, 2, 1, bias_attr=False) self.bn0_1 = nn.BatchNorm2D(num_feat) self.conv1_0 = nn.Conv2D(num_feat, num_feat * 2, 3, 1, 1, bias_attr=False) self.bn1_0 = nn.BatchNorm2D(num_feat * 2) self.conv1_1 = nn.Conv2D(num_feat * 2, num_feat * 2, 4, 2, 1, bias_attr=False) self.bn1_1 = nn.BatchNorm2D(num_feat * 2) self.conv2_0 = nn.Conv2D(num_feat * 2, num_feat * 4, 3, 1, 1, bias_attr=False) self.bn2_0 = nn.BatchNorm2D(num_feat * 4) self.conv2_1 = nn.Conv2D(num_feat * 4, num_feat * 4, 4, 2, 1, bias_attr=False) self.bn2_1 = nn.BatchNorm2D(num_feat * 4) self.conv3_0 = nn.Conv2D(num_feat * 4, num_feat * 8, 3, 1, 1, bias_attr=False) self.bn3_0 = nn.BatchNorm2D(num_feat * 8) self.conv3_1 = nn.Conv2D(num_feat * 8, num_feat * 8, 4, 2, 1, bias_attr=False) self.bn3_1 = nn.BatchNorm2D(num_feat * 8) self.conv4_0 = nn.Conv2D(num_feat * 8, num_feat * 8, 3, 1, 1, bias_attr=False) self.bn4_0 = nn.BatchNorm2D(num_feat * 8) self.conv4_1 = nn.Conv2D(num_feat * 8, num_feat * 8, 4, 2, 1, bias_attr=False) self.bn4_1 = nn.BatchNorm2D(num_feat * 8) self.linear1 = nn.Linear(num_feat * 8 * 4 * 4, 100) self.linear2 = nn.Linear(100, 1) # activation function self.lrelu = nn.LeakyReLU(negative_slope=0.2) def forward(self, x): assert x.shape[2] == 128 and x.shape[3] == 128, ( f'Input spatial size must be 128x128, ' f'but received {x.shape}.') feat = self.lrelu(self.conv0_0(x)) feat = self.lrelu(self.bn0_1( self.conv0_1(feat))) # output spatial size: (64, 64) feat = self.lrelu(self.bn1_0(self.conv1_0(feat))) feat = self.lrelu(self.bn1_1( self.conv1_1(feat))) # output spatial size: (32, 32) feat = self.lrelu(self.bn2_0(self.conv2_0(feat))) feat = self.lrelu(self.bn2_1( self.conv2_1(feat))) # output spatial size: (16, 16) feat = self.lrelu(self.bn3_0(self.conv3_0(feat))) feat = self.lrelu(self.bn3_1( self.conv3_1(feat))) # output spatial size: (8, 8) feat = self.lrelu(self.bn4_0(self.conv4_0(feat))) feat = self.lrelu(self.bn4_1( self.conv4_1(feat))) # output spatial size: (4, 4) feat = feat.reshape([feat.shape[0], -1]) feat = self.lrelu(self.linear1(feat)) out = self.linear2(feat) return out