# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from .base_model import BaseModel from .builder import MODELS from .generators.builder import build_generator from .discriminators.builder import build_discriminator from .criterions import build_criterion from ..modules.init import init_weights @MODELS.register() class DCGANModel(BaseModel): """ This class implements the DCGAN model, for learning a distribution from input images. DCGAN paper: https://arxiv.org/pdf/1511.06434 """ def __init__(self, generator, discriminator=None, gan_criterion=None): """Initialize the DCGAN class. Args: generator (dict): config of generator. discriminator (dict): config of discriminator. pixel_criterion (dict): config of pixel criterion. gan_criterion (dict): config of gan criterion. """ super(DCGANModel, self).__init__() self.gen_cfg = generator # define networks (both generator and discriminator) self.nets['netG'] = build_generator(generator) init_weights(self.nets['netG']) if self.is_train: self.nets['netD'] = build_discriminator(discriminator) init_weights(self.nets['netD']) if gan_criterion: self.gan_criterion = build_criterion(gan_criterion) def setup_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Args: input (dict): include the data itself and its metadata information. """ # get 1-channel gray image, or 3-channel color image self.real = paddle.to_tensor(input['A']) self.image_paths = input['A_path'] def forward(self): """Run forward pass; called by both functions and .""" # generate random noise and fake image self.z = paddle.rand(shape=(self.real.shape[0], self.gen_cfg.input_nz, 1, 1)) self.fake = self.nets['netG'](self.z) # put items to visual dict self.visual_items['real'] = self.real self.visual_items['fake'] = self.fake def backward_D(self): """Calculate GAN loss for the discriminator""" # Fake; stop backprop to the generator by detaching fake pred_fake = self.nets['netD'](self.fake.detach()) self.loss_D_fake = self.gan_criterion(pred_fake, False) pred_real = self.nets['netD'](self.real) self.loss_D_real = self.gan_criterion(pred_real, True) # combine loss and calculate gradients self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 self.loss_D.backward() self.losses['D_fake_loss'] = self.loss_D_fake self.losses['D_real_loss'] = self.loss_D_real def backward_G(self): """Calculate GAN loss for the generator""" # G(A) should fake the discriminator pred_fake = self.nets['netD'](self.fake) self.loss_G_GAN = self.gan_criterion(pred_fake, True) # combine loss and calculate gradients self.loss_G = self.loss_G_GAN self.loss_G.backward() self.losses['G_adv_loss'] = self.loss_G_GAN def train_iter(self, optimizers=None): # compute fake images: G(A) self.forward() #update D self.set_requires_grad(self.nets['netD'], True) self.set_requires_grad(self.nets['netG'], False) self.optimizers['optimizer_D'].clear_grad() self.backward_D() self.optimizers['optimizer_D'].step() # update G self.set_requires_grad(self.nets['netD'], False) self.set_requires_grad(self.nets['netG'], True) self.optimizers['optimizer_G'].clear_grad() self.backward_G() self.optimizers['optimizer_G'].step()