# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import paddle from .builder import METRICS @METRICS.register() class PSNR(paddle.metric.Metric): def __init__(self, crop_border, input_order='HWC', test_y_channel=False): self.crop_border = crop_border self.input_order = input_order self.test_y_channel = test_y_channel self.reset() def reset(self): self.results = [] def update(self, preds, gts): if not isinstance(preds, (list, tuple)): preds = [preds] if not isinstance(gts, (list, tuple)): gts = [gts] for pred, gt in zip(preds, gts): value = calculate_psnr(pred, gt, self.crop_border, self.input_order, self.test_y_channel) self.results.append(value) def accumulate(self): if len(self.results) <= 0: return 0. return np.mean(self.results) def name(self): return 'PSNR' @METRICS.register() class SSIM(PSNR): def update(self, preds, gts): if not isinstance(preds, (list, tuple)): preds = [preds] if not isinstance(gts, (list, tuple)): gts = [gts] for pred, gt in zip(preds, gts): value = calculate_ssim(pred, gt, self.crop_border, self.input_order, self.test_y_channel) self.results.append(value) def name(self): return 'SSIM' def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate PSNR (Peak Signal-to-Noise Ratio). Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result. """ assert img1.shape == img2.shape, ( f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError( f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = img1.copy().astype('float32') img2 = img2.copy().astype('float32') img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20. * np.log10(255. / np.sqrt(mse)) def _ssim(img1, img2): """Calculate SSIM (structural similarity) for one channel images. It is called by func:`calculate_ssim`. Args: img1 (ndarray): Images with range [0, 255] with order 'HWC'. img2 (ndarray): Images with range [0, 255] with order 'HWC'. Returns: float: ssim result. """ C1 = (0.01 * 255)**2 C2 = (0.03 * 255)**2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False): """Calculate SSIM (structural similarity). Ref: Image quality assessment: From error visibility to structural similarity The results are the same as that of the official released MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/. For three-channel images, SSIM is calculated for each channel and then averaged. Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the SSIM calculation. input_order (str): Whether the input order is 'HWC' or 'CHW'. Default: 'HWC'. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: ssim result. """ assert img1.shape == img2.shape, ( f'Image shapes are differnet: {img1.shape}, {img2.shape}.') if input_order not in ['HWC', 'CHW']: raise ValueError( f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') img1 = img1.copy().astype('float32')[..., ::-1] img2 = img2.copy().astype('float32')[..., ::-1] img1 = reorder_image(img1, input_order=input_order) img2 = reorder_image(img2, input_order=input_order) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) ssims = [] for i in range(img1.shape[2]): ssims.append(_ssim(img1[..., i], img2[..., i])) return np.array(ssims).mean() def reorder_image(img, input_order='HWC'): """Reorder images to 'HWC' order. If the input_order is (h, w), return (h, w, 1); If the input_order is (c, h, w), return (h, w, c); If the input_order is (h, w, c), return as it is. Args: img (ndarray): Input image. input_order (str): Whether the input order is 'HWC' or 'CHW'. If the input image shape is (h, w), input_order will not have effects. Default: 'HWC'. Returns: ndarray: reordered image. """ if input_order not in ['HWC', 'CHW']: raise ValueError( f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") if len(img.shape) == 2: img = img[..., None] return img if input_order == 'CHW': img = img.transpose(1, 2, 0) return img def bgr2ycbcr(img, y_only=False): """Convert a BGR image to YCbCr image. The bgr version of rgb2ycbcr. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype if y_only: out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 else: out_img = np.matmul( img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] return out_img def to_y_channel(img): """Change to Y channel of YCbCr. Args: img (ndarray): Images with range [0, 255]. Returns: (ndarray): Images with range [0, 255] (float type) without round. """ img = img.astype(np.float32) / 255. if img.ndim == 3 and img.shape[2] == 3: img = bgr2ycbcr(img, y_only=True) img = img[..., None] return img * 255.