epochs: 200 output_dir: output_dir model: name: DCGANModel generator: name: DCGenerator norm_type: batch input_nz: 100 input_nc: 1 output_nc: 1 ngf: 64 discriminator: name: DCDiscriminator norm_type: batch ndf: 64 input_nc: 1 gan_criterion: name: GANLoss gan_mode: vanilla dataset: train: name: SingleDataset dataroot: data/mnist/train batch_size: 128 preprocess: - name: LoadImageFromFile key: A - name: Transfroms input_keys: [A] pipeline: - name: Resize size: [64, 64] interpolation: 'bicubic' #cv2.INTER_CUBIC keys: [image, image] - name: Transpose keys: [image, image] - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] keys: [image, image] test: name: SingleDataset dataroot: data/mnist/test preprocess: - name: LoadImageFromFile key: A - name: Transforms input_keys: [A] pipeline: - name: Resize size: [64, 64] interpolation: 'bicubic' #cv2.INTER_CUBIC keys: [image, image] - name: Transpose keys: [image, image] - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] keys: [image, image] lr_scheduler: name: LinearDecay learning_rate: 0.0002 start_epoch: 100 decay_epochs: 100 # will get from real dataset iters_per_epoch: 1 optimizer: optimizer_G: name: Adam net_names: - netG beta1: 0.5 optimizer_D: name: Adam net_names: - netD beta1: 0.5 log_config: interval: 100 visiual_interval: 500 snapshot_config: interval: 5