# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 from paddle.utils.download import get_weights_path_from_url from ..core import FaceDetector from .net_s3fd import s3fd from .bbox import * from .detect import * models_urls = { 's3fd': 'https://paddlegan.bj.bcebos.com/models/s3fd_paddle.pdparams', } class SFDDetector(FaceDetector): def __init__(self, path_to_detector=None, verbose=False): super(SFDDetector, self).__init__(verbose) # Initialise the face detector if path_to_detector is None: model_weights_path = get_weights_path_from_url(models_urls['s3fd']) model_weights = paddle.load(model_weights_path) else: model_weights = paddle.load(path_to_detector) self.face_detector = s3fd() self.face_detector.load_dict(model_weights) self.face_detector.eval() def detect_from_image(self, tensor_or_path): image = self.tensor_or_path_to_ndarray(tensor_or_path) bboxlist = detect(self.face_detector, image) keep = nms(bboxlist, 0.3) bboxlist = bboxlist[keep, :] bboxlist = [x for x in bboxlist if x[-1] > 0.5] return bboxlist def detect_from_batch(self, images): bboxlists = batch_detect(self.face_detector, images) keeps = [ nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1]) ] bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)] bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists] return bboxlists @property def reference_scale(self): return 195 @property def reference_x_shift(self): return 0 @property def reference_y_shift(self): return 0