# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys cur_path = os.path.abspath(os.path.dirname(__file__)) sys.path.append(cur_path) import time import argparse import ast import glob import numpy as np import paddle.fluid as fluid import cv2 from data import EDVRDataset from paddle.incubate.hapi.download import get_path_from_url EDVR_weight_url = 'https://paddlegan.bj.bcebos.com/applications/edvr_infer_model.tar' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--input', type=str, default=None, help='input video path') parser.add_argument( '--output', type=str, default='output', help='output path') parser.add_argument( '--weight_path', type=str, default=None, help='weight path') args = parser.parse_args() return args def get_img(pred): print('pred shape', pred.shape) pred = pred.squeeze() pred = np.clip(pred, a_min=0., a_max=1.0) pred = pred * 255 pred = pred.round() pred = pred.astype('uint8') pred = np.transpose(pred, (1, 2, 0)) # chw -> hwc pred = pred[:, :, ::-1] # rgb -> bgr return pred def save_img(img, framename): dirname = os.path.dirname(framename) if not os.path.exists(dirname): os.makedirs(dirname) cv2.imwrite(framename, img) def dump_frames_ffmpeg(vid_path, outpath, r=None, ss=None, t=None): ffmpeg = ['ffmpeg ', ' -loglevel ', ' error '] vid_name = vid_path.split('/')[-1].split('.')[0] out_full_path = os.path.join(outpath, 'frames_input') if not os.path.exists(out_full_path): os.makedirs(out_full_path) # video file name outformat = out_full_path + '/%08d.png' if ss is not None and t is not None and r is not None: cmd = ffmpeg + [ ' -ss ', ss, ' -t ', t, ' -i ', vid_path, ' -r ', r, ' -qscale:v ', ' 0.1 ', ' -start_number ', ' 0 ', outformat ] else: cmd = ffmpeg + [' -i ', vid_path, ' -start_number ', ' 0 ', outformat] cmd = ''.join(cmd) print(cmd) if os.system(cmd) == 0: print('Video: {} done'.format(vid_name)) else: print('Video: {} error'.format(vid_name)) print('') sys.stdout.flush() return out_full_path def frames_to_video_ffmpeg(framepath, videopath, r): ffmpeg = ['ffmpeg ', ' -loglevel ', ' error '] cmd = ffmpeg + [ ' -r ', r, ' -f ', ' image2 ', ' -i ', framepath, ' -vcodec ', ' libx264 ', ' -pix_fmt ', ' yuv420p ', ' -crf ', ' 16 ', videopath ] cmd = ''.join(cmd) print(cmd) if os.system(cmd) == 0: print('Video: {} done'.format(videopath)) else: print('Video: {} error'.format(videopath)) print('') sys.stdout.flush() class EDVRPredictor: def __init__(self, input, output, weight_path=None): self.input = input self.output = os.path.join(output, 'EDVR') place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() self.exe = fluid.Executor(place) if weight_path is None: weight_path = get_path_from_url(EDVR_weight_url, cur_path) print(weight_path) model_filename = 'EDVR_model.pdmodel' params_filename = 'EDVR_params.pdparams' out = fluid.io.load_inference_model(dirname=weight_path, model_filename=model_filename, params_filename=params_filename, executor=self.exe) self.infer_prog, self.feed_list, self.fetch_list = out def run(self): vid = self.input base_name = os.path.basename(vid).split('.')[0] output_path = os.path.join(self.output, base_name) pred_frame_path = os.path.join(output_path, 'frames_pred') if not os.path.exists(output_path): os.makedirs(output_path) if not os.path.exists(pred_frame_path): os.makedirs(pred_frame_path) cap = cv2.VideoCapture(vid) fps = cap.get(cv2.CAP_PROP_FPS) out_path = dump_frames_ffmpeg(vid, output_path) frames = sorted(glob.glob(os.path.join(out_path, '*.png'))) dataset = EDVRDataset(frames) periods = [] cur_time = time.time() for infer_iter, data in enumerate(dataset): data_feed_in = [data[0]] infer_outs = self.exe.run(self.infer_prog, fetch_list=self.fetch_list, feed={self.feed_list[0]:np.array(data_feed_in)}) infer_result_list = [item for item in infer_outs] frame_path = data[1] img_i = get_img(infer_result_list[0]) save_img(img_i, os.path.join(pred_frame_path, os.path.basename(frame_path))) prev_time = cur_time cur_time = time.time() period = cur_time - prev_time periods.append(period) print('Processed {} samples'.format(infer_iter + 1)) frame_pattern_combined = os.path.join(pred_frame_path, '%08d.png') vid_out_path = os.path.join(self.output, '{}_edvr_out.mp4'.format(base_name)) frames_to_video_ffmpeg(frame_pattern_combined, vid_out_path, str(int(fps))) return frame_pattern_combined, vid_out_path if __name__ == "__main__": predictor = EDVRPredictor(args.input, args.output, args.weight_path) predictor.run()