# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import paddle import paddle.nn as nn from .generators.builder import build_generator from .base_model import BaseModel from .losses import GANLoss from .builder import MODELS @MODELS.register() class SRGANModel(BaseModel): def __init__(self, cfg): super(SRGANModel, self).__init__(cfg) # define networks self.model_names = ['G'] self.netG = build_generator(cfg.model.generator) self.visual_names = ['LQ', 'GT', 'fake_H'] # TODO: support srgan train. if False: # self.netD = build_discriminator(cfg.model.discriminator) self.netG.train() # self.netD.train() def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): include the data itself and its metadata information. The option 'direction' can be used to swap images in domain A and domain B. """ # AtoB = self.opt.dataset.train.direction == 'AtoB' if 'A' in input: self.LQ = paddle.to_tensor(input['A']) if 'B' in input: self.GT = paddle.to_tensor(input['B']) if 'A_paths' in input: self.image_paths = input['A_paths'] def forward(self): self.fake_H = self.netG(self.LQ) def optimize_parameters(self, step): pass