# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # code was heavily based on https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix import os import paddle import numpy as np from collections import OrderedDict from abc import ABC, abstractmethod from .criterions.builder import build_criterion from ..solver import build_lr_scheduler, build_optimizer from ..metrics import build_metric from ..utils.visual import tensor2img class BaseModel(ABC): """This class is an abstract base class (ABC) for models. To create a subclass, you need to implement the following five functions: -- <__init__>: initialize the class. -- : unpack data from dataset and apply preprocessing. -- : produce intermediate results. -- : calculate losses, gradients, and update network weights. # trainer training logic: # # build_model || model(BaseModel) # | || # build_dataloader || dataloader # | || # model.setup_lr_schedulers || lr_scheduler # | || # model.setup_optimizers || optimizers # | || # train loop (model.setup_input + model.train_iter) || train loop # | || # print log (model.get_current_losses) || # | || # save checkpoint (model.nets) \/ """ def __init__(self, params=None): """Initialize the BaseModel class. When creating your custom class, you need to implement your own initialization. In this function, you should first call Then, you need to define four lists: -- self.losses (dict): specify the training losses that you want to plot and save. -- self.nets (dict): define networks used in our training. -- self.visual_names (str list): specify the images that you want to display and save. -- self.optimizers (dict): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. Args: params (dict): Hyper params for train or test. Default: None. """ self.params = params self.is_train = True if self.params is None else self.params.get( 'is_train', True) self.nets = OrderedDict() self.optimizers = OrderedDict() self.metrics = OrderedDict() self.losses = OrderedDict() self.visual_items = OrderedDict() @abstractmethod def setup_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Args: input (dict): includes the data itself and its metadata information. """ pass @abstractmethod def forward(self): """Run forward pass; called by both functions and .""" pass @abstractmethod def train_iter(self, optims=None): """Calculate losses, gradients, and update network weights; called in every training iteration""" pass def set_total_iter(self, total_iter): self.total_iter = total_iter def test_iter(self, metrics=None): """Calculate metrics; called in every test iteration""" self.eval() with paddle.no_grad(): self.forward() self.train() def setup_train_mode(self, is_train): self.is_train = is_train def setup_lr_schedulers(self, cfg): self.lr_scheduler = build_lr_scheduler(cfg) return self.lr_scheduler def setup_optimizers(self, lr, cfg): if cfg.get('name', None): cfg_ = cfg.copy() net_names = cfg_.pop('net_names') parameters = [] for net_name in net_names: parameters += self.nets[net_name].parameters() self.optimizers['optim'] = build_optimizer(cfg_, lr, parameters) else: for opt_name, opt_cfg in cfg.items(): cfg_ = opt_cfg.copy() net_names = cfg_.pop('net_names') parameters = [] for net_name in net_names: parameters += self.nets[net_name].parameters() self.optimizers[opt_name] = build_optimizer( cfg_, lr, parameters) return self.optimizers def setup_metrics(self, cfg): if isinstance(list(cfg.values())[0], dict): for metric_name, cfg_ in cfg.items(): self.metrics[metric_name] = build_metric(cfg_) else: metric = build_metric(cfg) self.metrics[metric.__class__.__name__] = metric return self.metrics def eval(self): """Make nets eval mode during test time""" for net in self.nets.values(): net.eval() def train(self): """Make nets train mode during train time""" for net in self.nets.values(): net.train() def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" pass def get_image_paths(self): """ Return image paths that are used to load current data""" if hasattr(self, 'image_paths'): return self.image_paths return [] def get_current_visuals(self): """Return visualization images.""" return self.visual_items def get_current_losses(self): """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" return self.losses def set_requires_grad(self, nets, requires_grad=False): """Set requies_grad=Fasle for all the networks to avoid unnecessary computations Args: nets (network list): a list of networks requires_grad (bool): whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.trainable = requires_grad