epochs: 200 output_dir: output_dir model: name: StarGANv2Model latent_dim: &LATENT_DIM 16 lambda_sty: 1 lambda_ds: 2 lambda_cyc: 1 generator: name: StarGANv2Generator img_size: &IMAGE_SIZE 256 w_hpf: 0 style_dim: &STYLE_DIM 64 style: name: StarGANv2Style img_size: *IMAGE_SIZE style_dim: *STYLE_DIM num_domains: &NUM_DOMAINS 3 mapping: name: StarGANv2Mapping latent_dim: *LATENT_DIM style_dim: *STYLE_DIM num_domains: *NUM_DOMAINS discriminator: name: StarGANv2Discriminator img_size: *IMAGE_SIZE num_domains: *NUM_DOMAINS dataset: train: name: StarGANv2Dataset dataroot: data/stargan-v2/afhq/train is_train: True num_workers: 8 batch_size: 4 preprocess: - name: LoadImageFromFile key: src - name: LoadImageFromFile key: ref - name: LoadImageFromFile key: ref2 - name: Transforms input_keys: [src, ref, ref2] pipeline: - name: RandomResizedCropProb prob: 0.9 size: [*IMAGE_SIZE, *IMAGE_SIZE] scale: [0.8, 1.0] ratio: [0.9, 1.1] interpolation: 'bilinear' keys: [image, image, image] - name: Resize size: [*IMAGE_SIZE, *IMAGE_SIZE] interpolation: 'bilinear' keys: [image, image, image] - name: RandomHorizontalFlip prob: 0.5 keys: [image, image, image] - name: Transpose keys: [image, image, image] - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] keys: [image, image, image] test: name: StarGANv2Dataset dataroot: data/stargan-v2/afhq/val is_train: False num_workers: 8 batch_size: 16 test_count: 16 preprocess: - name: LoadImageFromFile key: src - name: LoadImageFromFile key: ref - name: Transforms input_keys: [src, ref] pipeline: - name: Resize size: [*IMAGE_SIZE, *IMAGE_SIZE] interpolation: 'bicubic' #cv2.INTER_CUBIC keys: [image, image] - name: Transpose keys: [image, image] - name: Normalize mean: [127.5, 127.5, 127.5] std: [127.5, 127.5, 127.5] keys: [image, image] lr_scheduler: name: LinearDecay learning_rate: 0.0001 start_epoch: 100 decay_epochs: 100 # will get from real dataset iters_per_epoch: 365 optimizer: generator: name: Adam net_names: - generator beta1: 0.0 beta2: 0.99 weight_decay: 0.0001 style_encoder: name: Adam net_names: - style_encoder beta1: 0.0 beta2: 0.99 weight_decay: 0.0001 mapping_network: name: Adam net_names: - mapping_network beta1: 0.0 beta2: 0.99 weight_decay: 0.0001 discriminator: name: Adam net_names: - discriminator beta1: 0.0 beta2: 0.99 weight_decay: 0.0001 validate: interval: 5000 save_img: false log_config: interval: 5 visiual_interval: 100 snapshot_config: interval: 5