# PReNet ## 1 Introduction "Progressive Image Deraining Networks: A Better and Simpler Baseline" provides a better and simpler baseline deraining network by considering network architecture, input and output, and loss functions.
## 2 How to use ### 2.1 Prepare dataset The dataset(RainH.zip) used by PReNet can be downloaded from [here](https://pan.baidu.com/s/1_vxCatOV3sOA6Vkx1l23eA?pwd=vitu),uncompress it and get two folders(RainTrainH、Rain100H). The structure of dataset is as following: ``` ├── RainH ├── RainTrainH | ├── rain | | ├── 1.png | | └── 2.png | | . | | . | └── norain | ├── 1.png | └── 2.png | . | . └── Rain100H ├── rain | ├── 001.png | └── 002.png | . | . └── norain ├── 001.png └── 002.png . . ``` ### 2.2 Train/Test train model: ``` python -u tools/main.py --config-file configs/prenet.yaml ``` test model: ``` python tools/main.py --config-file configs/prenet.yaml --evaluate-only --load ${PATH_OF_WEIGHT} ``` ## 3 Results Evaluated on RGB channels, scale pixels in each border are cropped before evaluation. The metrics are PSNR / SSIM. | Method | Rain100H | |---|---| | PReNet | 29.5037 / 0.899 | Input:
Output:
## 4 Model Download | model | dataset | |---|---| | [PReNet](https://paddlegan.bj.bcebos.com/models/PReNet.pdparams) | [RainH.zip](https://pan.baidu.com/s/1_vxCatOV3sOA6Vkx1l23eA?pwd=vitu) | # References - 1. [Progressive Image Deraining Networks: A Better and Simpler Baseline](https://arxiv.org/pdf/1901.09221v3.pdf) ``` @inproceedings{ren2019progressive, title={Progressive Image Deraining Networks: A Better and Simpler Baseline}, author={Ren, Dongwei and Zuo, Wangmeng and Hu, Qinghua and Zhu, Pengfei and Meng, Deyu}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, year={2019}, }