# PReNet
## 1 Introduction
"Progressive Image Deraining Networks: A Better and Simpler Baseline" provides a better and simpler baseline deraining network by considering network architecture, input and output, and loss functions.
## 2 How to use
### 2.1 Prepare dataset
The dataset(RainH.zip) used by PReNet can be downloaded from [here](https://pan.baidu.com/s/1_vxCatOV3sOA6Vkx1l23eA?pwd=vitu),uncompress it and get two folders(RainTrainH、Rain100H).
The structure of dataset is as following:
```
├── RainH
├── RainTrainH
| ├── rain
| | ├── 1.png
| | └── 2.png
| | .
| | .
| └── norain
| ├── 1.png
| └── 2.png
| .
| .
└── Rain100H
├── rain
| ├── 001.png
| └── 002.png
| .
| .
└── norain
├── 001.png
└── 002.png
.
.
```
### 2.2 Train/Test
train model:
```
python -u tools/main.py --config-file configs/prenet.yaml
```
test model:
```
python tools/main.py --config-file configs/prenet.yaml --evaluate-only --load ${PATH_OF_WEIGHT}
```
## 3 Results
Evaluated on RGB channels, scale pixels in each border are cropped before evaluation.
The metrics are PSNR / SSIM.
| Method | Rain100H |
|---|---|
| PReNet | 29.5037 / 0.899 |
Input:
Output:
## 4 Model Download
| model | dataset |
|---|---|
| [PReNet](https://paddlegan.bj.bcebos.com/models/PReNet.pdparams) | [RainH.zip](https://pan.baidu.com/s/1_vxCatOV3sOA6Vkx1l23eA?pwd=vitu) |
# References
- 1. [Progressive Image Deraining Networks: A Better and Simpler Baseline](https://arxiv.org/pdf/1901.09221v3.pdf)
```
@inproceedings{ren2019progressive,
title={Progressive Image Deraining Networks: A Better and Simpler Baseline},
author={Ren, Dongwei and Zuo, Wangmeng and Hu, Qinghua and Zhu, Pengfei and Meng, Deyu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
year={2019},
}