# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype from paddle.fluid.layers import deformable_conv from paddle.fluid import core, layers from paddle.fluid.layers import nn, utils from paddle.nn import Layer from paddle.fluid.initializer import Normal from paddle.common_ops_import import * class DeformConv2D(Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, deformable_groups=1, groups=1, weight_attr=None, bias_attr=None): super(DeformConv2D, self).__init__() assert weight_attr is not False, "weight_attr should not be False in Conv." self._weight_attr = weight_attr self._bias_attr = bias_attr self._deformable_groups = deformable_groups self._groups = groups self._in_channels = in_channels self._out_channels = out_channels self.padding = padding self.stride = stride self._channel_dim = 1 self._stride = utils.convert_to_list(stride, 2, 'stride') self._dilation = utils.convert_to_list(dilation, 2, 'dilation') self._kernel_size = utils.convert_to_list(kernel_size, 2, 'kernel_size') if in_channels % groups != 0: raise ValueError("in_channels must be divisible by groups.") self._padding = utils.convert_to_list(padding, 2, 'padding') filter_shape = [out_channels, in_channels // groups] + self._kernel_size def _get_default_param_initializer(): filter_elem_num = np.prod(self._kernel_size) * self._in_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) self.weight = self.create_parameter( shape=filter_shape, attr=self._weight_attr, default_initializer=_get_default_param_initializer()) self.bias = self.create_parameter( attr=self._bias_attr, shape=[self._out_channels], is_bias=True) def forward(self, x, offset, mask): out = deform_conv2d( x=x, offset=offset, mask=mask, weight=self.weight, bias=self.bias, stride=self._stride, padding=self._padding, dilation=self._dilation, deformable_groups=self._deformable_groups, groups=self._groups, ) return out def deform_conv2d(x, offset, weight, mask, bias=None, stride=1, padding=0, dilation=1, deformable_groups=1, groups=1, name=None): stride = utils.convert_to_list(stride, 2, 'stride') padding = utils.convert_to_list(padding, 2, 'padding') dilation = utils.convert_to_list(dilation, 2, 'dilation') use_deform_conv2d_v1 = True if mask is None else False if in_dygraph_mode(): attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation, 'deformable_groups',deformable_groups, 'groups', groups, 'im2col_step', 1) if use_deform_conv2d_v1: op_type = 'deformable_conv_v1' pre_bias = getattr(core.ops, op_type)(x, offset, weight, *attrs) else: op_type = 'deformable_conv' pre_bias = getattr(core.ops, op_type)(x, offset, mask, weight, *attrs) if bias is not None: out = nn.elementwise_add(pre_bias, bias, axis=1) else: out = pre_bias return out class DeformableConv_dygraph(Layer): def __init__(self,num_filters,filter_size,dilation, stride,padding,deformable_groups=1,groups=1): super(DeformableConv_dygraph, self).__init__() self.num_filters = num_filters self.filter_size = filter_size self.dilation = dilation self.stride = stride self.padding = padding self.deformable_groups = deformable_groups self.groups = groups self.defor_conv = DeformConv2D(in_channels=self.num_filters, out_channels=self.num_filters, kernel_size=self.filter_size, stride=self.stride, padding=self.padding, dilation=self.dilation, deformable_groups=self.deformable_groups, groups=self.groups, weight_attr=None, bias_attr=None) def forward(self,*input): x = input[0] offset = input[1] mask = input[2] out = self.defor_conv(x, offset, mask) return out