# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn from .builder import MODELS from .sr_model import BaseSRModel from .generators.edvr import ResidualBlockNoBN from ..modules.init import reset_parameters @MODELS.register() class EDVRModel(BaseSRModel): """EDVR Model. Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks. """ def __init__(self, generator, tsa_iter, pixel_criterion=None): """Initialize the EDVR class. Args: generator (dict): config of generator. tsa_iter (dict): config of tsa_iter. pixel_criterion (dict): config of pixel criterion. """ super(EDVRModel, self).__init__(generator, pixel_criterion) self.tsa_iter = tsa_iter self.current_iter = 1 init_edvr_weight(self.nets['generator']) def setup_input(self, input): self.lq = paddle.to_tensor(input['lq']) self.visual_items['lq'] = self.lq[:, 2, :, :, :] self.visual_items['lq-2'] = self.lq[:, 0, :, :, :] self.visual_items['lq-1'] = self.lq[:, 1, :, :, :] self.visual_items['lq+1'] = self.lq[:, 3, :, :, :] self.visual_items['lq+2'] = self.lq[:, 4, :, :, :] if 'gt' in input: self.gt = paddle.to_tensor(input['gt']) self.visual_items['gt'] = self.gt self.image_paths = input['lq_path'] def train_iter(self, optims=None): optims['optim'].clear_grad() if self.tsa_iter: if self.current_iter == 1: print('Only train TSA module for', self.tsa_iter, 'iters.') for name, param in self.nets['generator'].named_parameters(): if 'TSAModule' not in name: param.trainable = False elif self.current_iter == self.tsa_iter + 1: print('Train all the parameters.') for param in self.nets['generator'].parameters(): param.trainable = True self.output = self.nets['generator'](self.lq) self.visual_items['output'] = self.output # pixel loss loss_pixel = self.pixel_criterion(self.output, self.gt) self.losses['loss_pixel'] = loss_pixel loss_pixel.backward() optims['optim'].step() self.current_iter += 1 def init_edvr_weight(net): def reset_func(m): if hasattr(m, 'weight') and (not isinstance(m, (nn.BatchNorm, nn.BatchNorm2D)) ) and (not isinstance(m, ResidualBlockNoBN)): reset_parameters(m) net.apply(reset_func)