# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # code was heavily based on https://github.com/wtjiang98/PSGAN # MIT License # Copyright (c) 2020 Wentao Jiang import paddle import functools import numpy as np import paddle.nn as nn import paddle.nn.functional as F from ...modules.nn import Spectralnorm from ...modules.norm import build_norm_layer from .builder import DISCRIMINATORS @DISCRIMINATORS.register() class NLayerDiscriminator(nn.Layer): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_type='instance', use_sigmoid=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_type (str) -- normalization layer type use_sigmoid (bool) -- whether use sigmoid at last """ super(NLayerDiscriminator, self).__init__() norm_layer = build_norm_layer(norm_type) if type( norm_layer ) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2D else: use_bias = norm_layer == nn.InstanceNorm2D kw = 4 padw = 1 if norm_type == 'spectral': sequence = [ Spectralnorm( nn.Conv2D(input_nc, ndf, kernel_size=kw, stride=2, padding=padw)), nn.LeakyReLU(0.01) ] else: sequence = [ nn.Conv2D(input_nc, ndf, kernel_size=kw, stride=2, padding=padw, bias_attr=use_bias), nn.LeakyReLU(0.2) ] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2**n, 8) if norm_type == 'spectral': sequence += [ Spectralnorm( nn.Conv2D(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw)), nn.LeakyReLU(0.01) ] else: sequence += [ nn.Conv2D(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias_attr=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) if norm_type == 'spectral': sequence += [ Spectralnorm( nn.Conv2D(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw)), nn.LeakyReLU(0.01) ] else: sequence += [ nn.Conv2D(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias_attr=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2) ] if norm_type == 'spectral': sequence += [ Spectralnorm( nn.Conv2D(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw, bias_attr=False)) ] # output 1 channel prediction map else: sequence += [ nn.Conv2D(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] # output 1 channel prediction map self.model = nn.Sequential(*sequence) self.final_act = F.sigmoid if use_sigmoid else (lambda x:x) def forward(self, input): """Standard forward.""" return self.final_act(self.model(input)) @DISCRIMINATORS.register() class NLayerDiscriminatorWithClassification(NLayerDiscriminator): def __init__(self, input_nc, n_class=10, **kwargs): input_nc = input_nc + n_class super(NLayerDiscriminatorWithClassification, self).__init__(input_nc, **kwargs) self.n_class = n_class def forward(self, x, class_id): if self.n_class > 0: class_id = (class_id % self.n_class).detach() class_id = F.one_hot(class_id, self.n_class).astype('float32') class_id = class_id.reshape([x.shape[0], -1, 1, 1]) class_id = class_id.tile([1,1,*x.shape[2:]]) x = paddle.concat([x, class_id], 1) return super(NLayerDiscriminatorWithClassification, self).forward(x)