# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F def upfirdn2d_native( input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 ): _, channel, in_h, in_w = input.shape input = input.reshape((-1, in_h, in_w, 1)) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.reshape((-1, in_h, 1, in_w, 1, minor)) out = out.transpose((0,1,3,5,2,4)) out = out.reshape((-1,1,1,1)) out = F.pad(out, [0, up_x - 1, 0, up_y - 1]) out = out.reshape((-1, in_h, in_w, minor, up_y, up_x)) out = out.transpose((0,3,1,4,2,5)) out = out.reshape((-1, minor, in_h * up_y, in_w * up_x)) out = F.pad( out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] ) out = out[ :,:, max(-pad_y0, 0) : out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0) : out.shape[3] - max(-pad_x1, 0), ] out = out.reshape(( [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] )) w = paddle.flip(kernel, [0, 1]).reshape((1, 1, kernel_h, kernel_w)) out = F.conv2d(out, w) out = out.reshape(( -1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )) out = out.transpose((0, 2, 3, 1)) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.reshape((-1, channel, out_h, out_w)) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): out = upfirdn2d_native( input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1] ) return out def make_kernel(k): k = paddle.to_tensor(k, dtype='float32') if k.ndim == 1: k = k.unsqueeze(0) * k.unsqueeze(1) k /= k.sum() return k class Upfirdn2dUpsample(nn.Layer): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) * (factor ** 2) self.register_buffer("kernel", kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) return out class Upfirdn2dDownsample(nn.Layer): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) self.register_buffer("kernel", kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) return out class Upfirdn2dBlur(nn.Layer): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer("kernel", kernel) self.pad = pad def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad) return out