# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn as nn import paddle.nn.functional as F from .builder import DISCRIMINATORS from ...modules.equalized import EqualLinear, EqualConv2D from ...modules.fused_act import FusedLeakyReLU from ...modules.upfirdn2d import Upfirdn2dBlur class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Upfirdn2dBlur(blur_kernel, pad=(pad0, pad1))) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append( EqualConv2D( in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate, ) ) if activate: layers.append(FusedLeakyReLU(out_channel, bias=bias)) super().__init__(*layers) class ResBlock(nn.Layer): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): super().__init__() self.conv1 = ConvLayer(in_channel, in_channel, 3) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) self.skip = ConvLayer( in_channel, out_channel, 1, downsample=True, activate=False, bias=False ) def forward(self, input): out = self.conv1(input) out = self.conv2(out) skip = self.skip(input) out = (out + skip) / math.sqrt(2) return out @DISCRIMINATORS.register() class StyleGANv2Discriminator(nn.Layer): def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): super().__init__() channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } convs = [ConvLayer(3, channels[size], 1)] log_size = int(math.log(size, 2)) in_channel = channels[size] for i in range(log_size, 2, -1): out_channel = channels[2 ** (i - 1)] convs.append(ResBlock(in_channel, out_channel, blur_kernel)) in_channel = out_channel self.convs = nn.Sequential(*convs) self.stddev_group = 4 self.stddev_feat = 1 self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) self.final_linear = nn.Sequential( EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"), EqualLinear(channels[4], 1), ) def forward(self, input): out = self.convs(input) batch, channel, height, width = out.shape group = min(batch, self.stddev_group) stddev = out.reshape(( group, -1, self.stddev_feat, channel // self.stddev_feat, height, width )) stddev = paddle.sqrt(stddev.var(0, unbiased=False) + 1e-8) stddev = stddev.mean([2, 3, 4], keepdim=True).squeeze(2) stddev = stddev.tile((group, 1, height, width)) out = paddle.concat([out, stddev], 1) out = self.final_conv(out) out = out.reshape((batch, -1)) out = self.final_linear(out) return out