import paddle import os import sys sys.path.insert(0, os.getcwd()) from ppgan.apps import StyleGANv2Predictor import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--output_path", type=str, default='output_dir', help="path to output image dir") parser.add_argument("--weight_path", type=str, default=None, help="path to model checkpoint path") parser.add_argument("--model_type", type=str, default=None, help="type of model for loading pretrained model") parser.add_argument("--seed", type=int, default=None, help="sample random seed for model's image generation") parser.add_argument("--size", type=int, default=1024, help="resolution of output image") parser.add_argument("--style_dim", type=int, default=512, help="number of style dimension") parser.add_argument("--n_mlp", type=int, default=8, help="number of mlp layer depth") parser.add_argument("--channel_multiplier", type=int, default=2, help="number of channel multiplier") parser.add_argument("--n_row", type=int, default=3, help="row number of output image grid") parser.add_argument("--n_col", type=int, default=5, help="column number of output image grid") parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.") args = parser.parse_args() if args.cpu: paddle.set_device('cpu') predictor = StyleGANv2Predictor( output_path=args.output_path, weight_path=args.weight_path, model_type=args.model_type, seed=args.seed, size=args.size, style_dim=args.style_dim, n_mlp=args.n_mlp, channel_multiplier=args.channel_multiplier ) predictor.run(args.n_row, args.n_col)