# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys import time import logging import argparse import ast import numpy as np try: import cPickle as pickle except: import pickle import paddle.fluid as fluid import cv2 from utils.config_utils import * #import models from reader import get_reader #from metrics import get_metrics from utils.utility import check_cuda from utils.utility import check_version logging.root.handlers = [] FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s' logging.basicConfig(level=logging.DEBUG, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='AttentionCluster', help='name of model to train.') parser.add_argument( '--config', type=str, default='configs/attention_cluster.txt', help='path to config file of model') parser.add_argument( '--use_gpu', type=ast.literal_eval, default=True, help='default use gpu.') parser.add_argument( '--batch_size', type=int, default=1, help='sample number in a batch for inference.') parser.add_argument( '--filelist', type=str, default=None, help='path to inferenece data file lists file.') parser.add_argument( '--log_interval', type=int, default=1, help='mini-batch interval to log.') parser.add_argument( '--infer_topk', type=int, default=20, help='topk predictions to restore.') parser.add_argument( '--save_dir', type=str, default=os.path.join('data', 'predict_results'), help='directory to store results') parser.add_argument( '--video_path', type=str, default=None, help='directory to store results') args = parser.parse_args() return args def get_img(pred): print('pred shape', pred.shape) pred = pred.squeeze() pred = np.clip(pred, a_min=0., a_max=1.0) pred = pred * 255 pred = pred.round() pred = pred.astype('uint8') pred = np.transpose(pred, (1, 2, 0)) # chw -> hwc pred = pred[:, :, ::-1] # rgb -> bgr return pred def save_img(img, framename): dirname = './demo/resultpng' filename = os.path.join(dirname, framename+'.png') cv2.imwrite(filename, img) def infer(args): # parse config config = parse_config(args.config) infer_config = merge_configs(config, 'infer', vars(args)) print_configs(infer_config, "Infer") model_path = '/workspace/PaddleGAN/applications/EDVR/data/inference_model' model_filename = 'EDVR_model.pdmodel' params_filename = 'EDVR_params.pdparams' place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) [inference_program, feed_list, fetch_list] = fluid.io.load_inference_model(dirname=model_path, model_filename=model_filename, params_filename=params_filename, executor=exe) infer_reader = get_reader(args.model_name.upper(), 'infer', infer_config) #infer_metrics = get_metrics(args.model_name.upper(), 'infer', infer_config) #infer_metrics.reset() periods = [] cur_time = time.time() for infer_iter, data in enumerate(infer_reader()): if args.model_name == 'EDVR': data_feed_in = [items[0] for items in data] video_info = [items[1:] for items in data] infer_outs = exe.run(inference_program, fetch_list=fetch_list, feed={feed_list[0]:np.array(data_feed_in)}) infer_result_list = [item for item in infer_outs] videonames = [item[0] for item in video_info] framenames = [item[1] for item in video_info] for i in range(len(infer_result_list)): img_i = get_img(infer_result_list[i]) save_img(img_i, 'img' + videonames[i] + framenames[i]) prev_time = cur_time cur_time = time.time() period = cur_time - prev_time periods.append(period) #infer_metrics.accumulate(infer_result_list) if args.log_interval > 0 and infer_iter % args.log_interval == 0: logger.info('Processed {} samples'.format(infer_iter + 1)) logger.info('[INFER] infer finished. average time: {}'.format(np.mean(periods))) if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir) #infer_metrics.finalize_and_log_out(savedir=args.save_dir) if __name__ == "__main__": args = parse_args() # check whether the installed paddle is compiled with GPU check_cuda(args.use_gpu) check_version() logger.info(args) infer(args)